## Large-scale international assessment by data visualization and rapid data mining

Chong Ho Yu, Ph.D., D. Phil. Zizhong (David) Xiao, M.S. Presentation at 2020 IDEAS Global AI Conference

#### AI vs. data exploration

- Many critics charge that while using traditional statistics many researchers blindly follow mechanical procedures without thinking (e.g. adopted p < .05 as the absolute criterion without checking the data pattern)
- Data mining, which is an extension of exploratory data analysis, aims to amend this problem by exploring the data.
- With the advance of AI some people hand over human judgment to AI.
- For example, neural network is said to be a black box. The analyst has no idea of what is happening inside the "hidden layers" (Deep learning has multiple hidden layers!)
- Are we going into a big circle?

### Objective

- A demo of Rapid Predictive Modeling (RPM): Everything is automatic
- Data visualization: understand the data structure first so that appropriate methods can be selected.
- Manually run ensemble models and perform model comparison.

#### Data source

- 2018 Programme for International Student Assessment (PISA) by Organization for Economic and Collaboration Development (OECD)
- The test is administered to 80+ countries/regions every three years.
- Reading, math, and science.
- Also collected background information of the students (e.g. demographic, teacher info, school info, well-being).
- Focus: which wellbeing variables can predict math and science test performance?

#### Well-being

- Individual dimension (self-health, skills, and psychological functioning),
- School environment (social connections and school work),
- Out-of-school environment (social connection, material conditions, and leisure time)

#### Rapid Predictive Modeler

- Statistical Analysis System (SAS): one of the leading DS software applications
- Two ways to access RPM in SAS
- SAS on Demand (Online sever-based computing)
- SAS Enterprise Guide (Local computing)



### Just one step!

| Task | s Favorites Pro   | gram Tools Help 🖺 🖬 🧀 🖬 🔛 🖴 🛍 🛍 🗙 🕪 🕬                               |
|------|-------------------|---------------------------------------------------------------------|
|      | Browse            | ss Flow 👻                                                           |
|      | Data              | 🕨 n 👻 🗉 Stop   Export 👻 Schedule 👻   📸 Project Log   📰 Properties 👻 |
|      | Describe          | ▶ <u></u>                                                           |
|      | Graph             |                                                                     |
|      | ANOVA             | ▶ 2018_RD                                                           |
|      | Regression        | ▶ M                                                                 |
|      | Multivariate      | •                                                                   |
|      | Survival Analysis | •                                                                   |
|      | Capability        | •                                                                   |
|      | Control Charts    | •                                                                   |
| lín. | Pareto Chart      |                                                                     |
|      | Time Series       | •                                                                   |
|      | Data Mining       | Model Scoring                                                       |
|      | OLAP              | Rapid Predictive Modeler                                            |
|      | Task Templates    | Recency, Frequency, and Monetary Analysis      OT8_RDM              |

## • Define the roles of variables

| 8                                 | Rapid Predictive Model for: H:\PISA2018\PISA2018_RDM.sas7bdat                  |
|-----------------------------------|--------------------------------------------------------------------------------|
| Data<br>Model                     | Data                                                                           |
| Report<br>Options<br>Registration | Data source:     H:\PISA2018\PISA2018_RDM.sas7bdat       Task filter:     None |
|                                   | Input variables: Modeling roles:                                               |
|                                   | Name  Dependent variable (Limit: 1)                                            |
|                                   | How_is_your_health_                                                            |
|                                   | I_like_my_look_just_the_way_it_i     I_consider_myself_to_be_attracti          |
|                                   | Lam_not_concerned_about_my_w     By Excluded                                   |
|                                   | A I_like_my_body     A I_like_the_way_my_clothes_fit_me     A Student Gender   |
|                                   | ▲ In_the_past_six_months_how_ofte                                              |
|                                   |                                                                                |
|                                   |                                                                                |
|                                   | In_the_past_six_months_how_ofte(                                               |
|                                   | ▲ In_the_past_six_months_how_ofte;                                             |
|                                   | In_the_past_six_months_how_oftes                                               |
|                                   | A How_satisfied_are_you_with_each. ✓                                           |
|                                   |                                                                                |
|                                   | Variables table                                                                |
|                                   | Run Save Cancel Help                                                           |
|                                   |                                                                                |

. :

## Modeling methods

- If "basic" is chosen, then only traditional and simple methods would be used (e.g. regression)
- If "advanced" is chosen, both traditional statistics and modern data science methods (e.g. neural networks, ensemble methods...etc.) will be used.

|                                   | Kapiu Fieui         | cuve model n                                                      |                 | AZUTO_KDIVI.Sas | Juai   |      |
|-----------------------------------|---------------------|-------------------------------------------------------------------|-----------------|-----------------|--------|------|
| Data<br>Model                     | Model               |                                                                   |                 |                 |        |      |
| Report<br>Options<br>Registration | Dependent variable: | PV_Science                                                        | Decisions and p | riors           |        |      |
|                                   | Modeling method:    | <ul> <li>Basic</li> <li>Intermediate</li> <li>Advanced</li> </ul> |                 |                 |        |      |
|                                   |                     |                                                                   | Run             | Save            | Cancel | Help |

 Model comparison is selected so that the algorithm can choose the best model (Champion)

| 2                                                  | Rapid Predictive Model for: H:\PISA2018\PISA2018_RDM.sas7bdat                                                                                                                                                                                                               |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>Model<br>Report<br>Options<br>Registration | Rapid Predictive Model for: H:\PISA2018\PISA2018_RDM.sas7bdat         Report         Report options         Image: Model summarization         Image: Variable ranking         Image: Cross tabulations         Image: Classification matrix         Image: The statistices |
|                                                    | <ul> <li>Fit statistics</li> <li>Lift plot</li> <li>Model comparison</li> <li>Standard reports</li> </ul>                                                                                                                                                                   |
|                                                    | Run Save Cancel Help                                                                                                                                                                                                                                                        |

#### Output



• The output is available in both HTML and PDF formats.

## RPM used both traditional and modern methods

| Model Selecti     | ion based o   | on Model Node              |                 |                                       |                                       |
|-------------------|---------------|----------------------------|-----------------|---------------------------------------|---------------------------------------|
| Selected<br>Model | Model<br>Node | Model Description          | Target<br>Label | Train:<br>Average<br>Squared<br>Error | Valid:<br>Average<br>Squared<br>Error |
| Y                 | Neural        | Neural Network             | PV<br>Science   | 5521.25                               | 5610.22                               |
|                   | Ensmbl        | Ensemble_Champion          | PV<br>Science   | 5926.17                               | 6000.79                               |
|                   | Reg           | Main Effects<br>Regression | PV<br>Science   | 5961.75                               | 6037.51                               |
|                   | Reg2          | Forwards                   | PV<br>Science   | 8363.95                               | 8417.82                               |

- I didn't choose the data mining methods. SAS made the decision for me.
- Traditional: Main effects regression and forward-selection regression
- Modern data science: Neural networks and ensemble champion

#### The best and the worst

#### **Model Fit Statistics**

| Statistic       |                  |                         | Train        |         | Validation   |       |
|-----------------|------------------|-------------------------|--------------|---------|--------------|-------|
| Akaike's Inform | nation Criterion | 1                       | 414265.2713  |         |              |       |
| Schwarz's Bay   | esian Criterion  | 1                       | 417250.1164  |         |              |       |
| Average Squa    | red Error        |                         | 5521.2514    |         | 5610.2184    |       |
| Maximum Abs     | olute Error      |                         | 389.1706     |         | 460.1698     |       |
| Sum of Freque   | encies           |                         | 48000.0000   |         | 32000.0000   |       |
| Root Average    | Square Error     |                         | 74.3051      |         | 74.9014      |       |
| Sum of Square   | e Érrors         |                         | 265020067.79 |         | 179526989.97 |       |
| Mean Squared    | d Error          |                         | 5560.6393    |         | 5610.2184    |       |
| Root Mean Sq    | uared Error      |                         | 74.5697      |         | 74.9014      |       |
| Average Error   | Function         |                         | 5521.2514    |         | 5610.2184    |       |
| Model Selectio  | on based on Mo   | del Node                |              |         | Pagel        | Break |
|                 |                  |                         |              | Train:  | Valid:       |       |
| Selected        | Model            |                         | Target       | Average | Average      |       |
| Model           | Node             | Model Description       | Label        | Squared | Squared      |       |
|                 |                  |                         |              | Error   | Error        |       |
| Y               | Neural           | Neural Network          | PV Science   | 5521.25 | 5610.22      |       |
|                 | Ensmbl           | Ensemble_Champion       | PV Science   | 5926.17 | 6000.79      |       |
|                 | Reg              | Main Effects Regression | PV Science   | 5961.75 | 6037.51      |       |
|                 | Reg2             | Forwards                | PV Science   | 8363.95 | 8417.82      |       |

- Averaged squared error
- Worst: Forwardselection regression
- "Best": Neural network
- But we paid a "high price."

Page Break

# Many variables are selected! Too complicated!

Selected Variable Importance

ICT resourc Cultural possessions at hor

Eudaemonia: meaning in I Home educational resourc

How did you feel the last time you spent time outside your home with your friends? Nervous How did you feel the last time you did your homework/studied for school? Motivated o General fear of failu

How did you feel the last time you did your homework/studied for school? Nervous How did you feel the last time you attended a mathematics class at school? Motivated o Thinking about your parents or guardians, how often do they: Treat me li How did you feel the last time you did your homework/studied for schoo How did you feel the last time you attended a [test language lesson] at schoo How satisfied are you with each of the following? How you use Social Connections: Parer

How satisfied are you with each of the following? All the things In the past six months, how often have you had the following? Irritability or ba When was the last time you spent time outside your home with you

Outside of school, during the past 7 days, on how many days did you engage in: Vigorous physical ac When was the last time you attended a mathematics class a

How often do you talk to your friends on the phone, send them text messages or have contact through socia Outside of school, during the past 7 days, on how many days did you engage in: Moderate physical ac How often do you worry about how much money your fai

- Neural network is well-fitted to the data and achieve high predictive accuracy.
- But the end result is too complicated!
- We need a concise model for actionable items.

#### Weighted Likelihood Estimates

- I like my look just the way it is
- I consider myself to be attractive
- I am not concerned about my weight
- 🚽 l like my body
- I like the way my clothes fit me.

- 199 items in the well-being survey
- It is very tempting to collapse many variables into a few by principal component analysis (PCA). After all, they are all conceptually related (wellbeing).
- Example: Group all responses on the left into "Body image"
- WLE: Weighted Likelihood Estimates

### Data Visualization: Overplotting!

- JMP Pro, a leading DV software developed by SAS Institute.
- Too many data! It obscures us from seeing the real relationship between science test performance and body image.
- If a regression line is fitted to the data, the *p* value is <.0001.
- But regression assumes a linear relationship.
- The residuals are too high.

| PV Science       | 800<br>700<br>600<br>500<br>400<br>300<br>200   |                                                   |                                 |                                                      |           |   |
|------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------|------------------------------------------------------|-----------|---|
|                  |                                                 | -2                                                | -1<br>Body ima                  | 0<br>ige (WLE)                                       | 1 2       | 2 |
|                  | — Line                                          | ar Fit                                            |                                 |                                                      |           |   |
| ⊿L               | inear Fi                                        | t                                                 |                                 |                                                      |           |   |
| P١               | / Scienc                                        | e = 459.6                                         | 9184 - 5.613                    | 0118*Body im                                         | age (WLE) |   |
| ⊿                | Summa                                           | ary of Fit                                        |                                 |                                                      |           |   |
|                  | RSquar<br>RSquar<br>Root M<br>Mean o<br>Observa | e<br>e Adj<br>ean Squa<br>of Respon<br>ations (or | are Error<br>Ise<br>r Sum Wgts) | 0.003452<br>0.003439<br>98.7055<br>459.0691<br>75497 |           |   |
| $\triangleright$ | Lack O                                          | f Fit                                             |                                 |                                                      |           |   |
| Δ                | Analys                                          | is of Vari                                        | iance                           |                                                      |           |   |
|                  | Courses                                         | DE                                                | Sum of                          | Mann Course                                          | C Datia   |   |
|                  | Model                                           | 1                                                 | 2547600                         | 2547600                                              | 261 4962  |   |
|                  | Error                                           | 75495                                             | 735530781                       | 9743                                                 | Prob > F  |   |
|                  | C. Total                                        | 75496                                             | 738078479                       |                                                      | <.0001*   |   |

#### Data reduction: Binning



#### Data visualization: Median smoothing

- Look at the trend of the median
- At first test score improves as body image goes up.
- Later it goes downward!
- Those who feel very good about their body (rightmost) are worse than those who feel bad (leftmost) in science test.



#### Median smoothing raw variables: Same pattern



#### Using the variables as is

- PISA does not have WLEs for all well-being constructs
- Rather than running PCA and then do binning on all of them, we used the raw variables as is.
- Bagging
- Boosting

### Bagging

- Bootstrap Aggregation
- An ensemble of many decision-trees obtained from repeated sampling with replacement from one data set.
- Afterward, the multitude of results are then combined to form a converged conclusion.

#### Bagging Results: PISA Well-being variables and Science Scores

- Complicated!
- Retain many more variables than its boosting counterpart.

| - |                        |                    |                          |                    | ,     |                     |       |             |
|---|------------------------|--------------------|--------------------------|--------------------|-------|---------------------|-------|-------------|
|   | Specific               | ations             |                          |                    |       |                     |       |             |
| - | Target Colun           | nn:                |                          | PV Sc              | ience | Training Rows:      | 68397 |             |
|   |                        |                    |                          |                    |       | Validation Rows:    | 29481 |             |
| I | Number of T            | rees in the        | Forest:                  |                    | 15    | Test Rows:          | 0     |             |
|   | Number of T            | erms Sam           | pled per Spli            | t:                 | 20    | Number of Terms:    | 82    |             |
|   |                        |                    |                          | Bootstrap Samples: | 68397 |                     |       |             |
|   |                        |                    | Minimum Splits per Tree: | 10                 |       |                     |       |             |
|   |                        |                    |                          |                    |       | Minimum Size Split: | 97    |             |
| ▼ | <b>Overall</b>         | Statisti           | cs                       |                    |       |                     |       |             |
|   | Individual<br>Trees    | RMS                | E                        |                    |       |                     |       |             |
|   | In Bag<br>Out of Bag   | 74.8086<br>97.0344 | 52<br>13                 |                    |       |                     |       |             |
|   |                        | RSquare            | RMSE                     | Ν                  |       |                     |       |             |
|   | Training<br>Validation | 0.089<br>0.083     | 95.421399<br>95.415635   | 68397<br>29481     |       |                     |       |             |
|   | Cumula                 | tive Val           | idation                  |                    |       |                     |       |             |
|   | Per-Tree               | e Sumn             | naries                   |                    |       |                     |       |             |
| ▼ | Column                 | Contri             | butions                  |                    |       |                     |       |             |
|   | Term                   |                    |                          |                    |       |                     |       | Nun<br>of S |
|   |                        | e                  |                          |                    |       |                     |       |             |

Now think of the last time you had a break between classes at school. How did you feel? Nervous or tense How did you feel the last time you spent time outside your home with your friends? Nervous or tense (R) How easy is it for you to talk to the following people about things that really bother you? Your teachers How did you feel the last time you did your homework/studied for school? Motivated or inspired

Thinking about your parents or guardians, how often do they: Treat me like a baby When was the last time you spent time outside your home with your friends? How many days a week do you usually spend time with your friends right after school? Thinking about your parents or guardians, how often do they: Try to control everything I do How did you feel the last time you attended a [test language lesson] at school? Nervous or tense

| Number<br>of Splits | SS         | Portion |
|---------------------|------------|---------|
| 203                 | 3975469.33 | 0.0802  |
| 196                 | 3798937.52 | 0.0767  |
| 206                 | 3245432.48 | 0.0655  |
| 211                 | 3205043.13 | 0.0647  |
| 266                 | 2910990.85 | 0.0587  |
| 269                 | 2644726.74 | 0.0534  |
| 157                 | 2600567.38 | 0.0525  |
| 164                 | 2493957.22 | 0.0503  |
| 139                 | 2476344.41 | 0.0500  |
| 180                 | 2141007.93 | 0.0432  |
| 269                 | 2053140.34 | 0.0414  |

# Bagging Results: PISA Well-being variables and Math Scores

- Complicated!
- Retain many more variables than its boosting counterpart.

| <ul> <li>Bootst</li> </ul> | rap For           | est for P              | V Mat          | th  |                                    |                |
|----------------------------|-------------------|------------------------|----------------|-----|------------------------------------|----------------|
| Specific                   | cations           |                        |                |     |                                    |                |
| Target Colur               | mn:               |                        | PV M           | ath | Training Rows:<br>Validation Rows: | 68397<br>29481 |
| Number of 1                | Trees in the      | Forest:                |                | 23  | Test Rows:                         | 0              |
| Number of 1                | Terms Sam         | pled per Spl           | it:            | 20  | Number of Terms:                   | 82             |
|                            |                   |                        |                |     | Bootstrap Samples:                 | 68397          |
|                            |                   |                        |                |     | Minimum Splits per Tree:           | 10             |
|                            |                   |                        |                |     | Minimum Size Split:                | 97             |
| Overall                    | Statisti          | cs                     |                |     |                                    |                |
| Individual<br>Trees        | RMS               | E                      |                |     |                                    |                |
| In Bag<br>Out of Bag       | 77.615<br>100.386 | 57<br>52               |                |     |                                    |                |
|                            | RSquare           | RMSE                   | Ν              |     |                                    |                |
| Training<br>Validation     | 0.075<br>0.069    | 98.917861<br>98.795643 | 68397<br>29481 |     |                                    |                |
|                            | <b>tive Val</b>   | idation                |                |     |                                    |                |
| Per-Tre                    | e Summ            | naries                 |                |     |                                    |                |
| Column                     | Contri            | butions                |                |     |                                    |                |

|                                                                                                               | Number    |            |         |
|---------------------------------------------------------------------------------------------------------------|-----------|------------|---------|
| Term                                                                                                          | of Splits | SS         | Portion |
| Now think of the last time you had a break between classes at school. How did you feel? Nervous or tense      | 301       | 3580419.9  | 0.0785  |
| This school year, on average, on how many days do you attend physical education classes each week?            | 83        | 3195879.98 | 0.0701  |
| How did you feel the last time you spent time outside your home with your friends? Bored                      | 293       | 3193773.85 | 0.0700  |
| Now think of the last time you had a break between classes at school. How did you feel? Lonely                | 298       | 3138136.4  | 0.0688  |
| How did you feel the last time you did your homework/studied for school? Motivated or inspired                | 412       | 2916652.72 | 0.0640  |
| How did you feel the last time you spent time outside your home with your friends? Nervous or tense           | 325       | 2778975    | 0.0609  |
| (R) How easy is it for you to talk to the following people about things that really bother you? Your teachers | 340       | 2697437.5  | 0.0592  |
| When was the last time you spent time outside your home with your friends?                                    | 249       | 2025966.4  | 0.0444  |

### Boosting

- Gradient boost tree
- A sequential method.
- Initially, the algorithm assigns all observations the equal weight before producing a statistical model. If the model fails to classify some of the observations correctly, then these observations will be assigned a heavier weight so they are more likely to be selected in the subsequent model.
- Each model is revised and updated constantly to successfully classify all the observations

#### Boosting Results: PISA Well-being and Science scores

Boostad Tree for DV Salance

#### Compact!

## • Only three variables!

| Specific      | ations               |           |                   |                    |       |
|---------------|----------------------|-----------|-------------------|--------------------|-------|
| Farget Colur  | nn: PV S             | Science   | Number o          | of training rows:  | 68397 |
| Number of L   | ayers:               | 50        | Number o          | f validation rows: | 29481 |
| Splits per Tr | ee:                  | 3         |                   |                    |       |
| _earning Ra   | te:                  | 0.1       |                   |                    |       |
| Overall       | Statistic            | S         |                   |                    |       |
|               |                      | DUGE      |                   |                    |       |
|               | RSquare              | RMSE      | N                 |                    |       |
| Training      | <b>RSquare</b> 0.037 | 98.101691 | <b>N</b><br>68397 |                    |       |

Column Contributions

|                                                                                                          | Number    |            |         |
|----------------------------------------------------------------------------------------------------------|-----------|------------|---------|
| Term                                                                                                     | of Splits | SS         | Portion |
| How did you feel the last time you spent time outside your home with your friends? Bored                 | 73        | 87229455.2 | 0.6532  |
| How did you feel the last time you spent time outside your home with your friends? Nervous or tense      | 50        | 26138195.5 | 0.1957  |
| Now think of the last time you had a break between classes at school. How did you feel? Nervous or tense | 21        | 17121605.4 | 0.1282  |
| Now think of the last time you had a break between classes at school. How did you feel? Lonely           | 6         | 3049721.29 | 0.0228  |
| Law is using baskbo                                                                                      | ^         | 0          | 0.0000  |

#### Boosting Results: PISA Well-being and Math Scores

#### Boosted Tree for PV Math

| Specificatio        | ns      |                            |      |
|---------------------|---------|----------------------------|------|
| Target Column:      | PV Math | Number of training rows:   | 6839 |
| Number of Layers:   | 50      | Number of validation rows: | 2948 |
| Splits per Tree:    | 3       |                            |      |
| Learning Rate:      | 0.1     |                            |      |
| <b>Overall Stat</b> | istics  |                            |      |

|            | RSquare | RMSE      | N     |
|------------|---------|-----------|-------|
| Training   | 0.031   | 101.25089 | 68397 |
| Validation | 0.024   | 101.14068 | 29481 |

#### **Cumulative Validation**

#### **Column Contributions**

V

|                                                                                                          | Number    |            |  |       |         |
|----------------------------------------------------------------------------------------------------------|-----------|------------|--|-------|---------|
| Term                                                                                                     | of Splits | SS         |  |       | Portion |
| How did you feel the last time you spent time outside your home with your friends? Bored                 | 80        | 83376586.6 |  |       | 0.7001  |
| Now think of the last time you had a break between classes at school. How did you feel? Nervous or tense | 19        | 17675884.5 |  |       | 0.1484  |
| How did you feel the last time you spent time outside your home with your friends? Nervous or tense      | 50        | 17351229.4 |  |       | 0.1457  |
| Now think of the last time you had a break between classes at school. How did you feel? Lonely           | 1         | 683530.232 |  |       | 0.0057  |
| How is your health?                                                                                      | 0         | 0          |  |       | 0.0000  |
| I like my look just the way it is                                                                        | 0         | 0          |  |       | 0.0000  |
| I consider myself to be attractive                                                                       | 0         | 0          |  |       | 0.0000  |
| Law wat as a second about we containt                                                                    | 0         | 0          |  | <br>1 | 0.0000  |

### Model Comparison: Between Bagging and Boosting

| 7 (                                         | Model Comp          | arison           |    |        |        |        |       |  |
|---------------------------------------------|---------------------|------------------|----|--------|--------|--------|-------|--|
|                                             | Predictors          |                  |    |        |        |        |       |  |
| ▼                                           | Measures of I       | Fit for PV Ma    | th |        |        |        |       |  |
| Predictor Creator .2.4.6.8 RSquare RASE AAE |                     |                  |    |        |        |        |       |  |
|                                             | PV Math Predictor   | Bootstrap Forest |    | 0.0715 | 98.990 | 80.207 | 97878 |  |
|                                             | PV Math Predictor 2 | Boosted Tree     |    | 0.0247 | 101.45 | 82.332 | 97878 |  |

|   | Model Compar           | ison             |          |         |        |        |       |
|---|------------------------|------------------|----------|---------|--------|--------|-------|
| Þ | Predictors             |                  |          |         |        |        |       |
| V | Measures of Fit        | for PV Scier     | nce      |         |        |        |       |
|   | Predictor              | Creator          | .2.4.6.8 | RSquare | RASE   | AAE    | Freq  |
|   | PV Science Predictor   | Bootstrap Forest |          | 0.0766  | 95.978 | 78.115 | 97878 |
|   | PV Science Predictor 2 | Boosted Tree     |          | 0.0299  | 98.375 | 80.181 | 97878 |

#### Data Visualization - Medium Smoothing





- Automated rapid data mining is quick, but it tends to produce a complicated model, which is not practical.
- Automated rapid data mining includes traditional OLS regression modeling, which is not necessary because modern data science methods always outperform OLS regression analysis.

| Model<br>Node    | Model Description                   | Target<br>Label          | Train:<br>Average<br>Squared<br>Error | Valid:<br>Average<br>Squared<br>Error |
|------------------|-------------------------------------|--------------------------|---------------------------------------|---------------------------------------|
| Neural<br>Ensmbl | Neural Network<br>Ensemble_Champion | PV Science<br>PV Science | 5521.25<br>5926.17                    | 5610.22<br>6000.79                    |
| Reg              | Main Effects Regression             | PV Science               | 5961.75                               | 6037.51                               |
| Reg2             | Forwards                            | PV Science               | 8363.95                               | 8417.82                               |

- Some traditionalists would like to look at the results of regression. Regression modeling may be necessary for the purpose of comparison. If so, we should use generalized regression.
- Cannot effectively deal with collinearity
- Tend to overfit
- Generalized regression amends these problems by imposing a penalty on a complicated model.
- The coefficient of unimportant variable will be zeroed out (in Elastic net).

- According to rapid predictive modeling, neural network produces the "best" model.
- In our manual data mining the bootstrap forest outperforms gradient boost tree.
- But should we choose the so-called "best" model?
- If I tell you to do 15-25 things to improve the current situation, can you do it?
- The gradient boosted tree suggest only three most important predictors of science/math test performance.
- It is helpful to inform policy-making and educational practice.

- We should not blindly follow the numeric findings; pattern-seeking data visualization is indispensable.
- Before running predictive modeling, we visualize the data to find solutions for overplotting.
- After running predictive modeling, again we visualize the data to find out whether the relationships are linear or nonlinear.