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ABSTRACT 

To enhance the generalizability of the findings and to overcome the replication crisis, it is common practice 
to run multiple models under the framework of ensemble methods, instead of drawing a conclusion based 
on a single analysis. At the stage of model comparison, the analyst can choose between model selection 
and model averaging. In model selection, the best model is retained based on predictive accuracy, error 
rates, or parsimony, such as F1 score, generalized R-square, RASE, AIC, and BIC. By doing so, the 
second-best and other less adequate models are totally discarded. On the other hand, in model averaging, 
information from all models is utilized in several ways, such as averaging the prediction estimates from all 
models, selecting the highest estimates of all models, or returning the proportion of the models that can 
substantially contribute to the outcome. While these options are available in SAS® Viya, SAS® Enterprise 
MinerTM, and JMP® Pro, no consensus exists on how model selection and model averaging should be 
properly used under different situations. There have been prior research studies that found, in most cases, 
model averaging and model selection lead to comparable results. In contrast, another study found that 
model averaging can yield more accurate results than model selection when researchers study complex 
models, such as nonlinear mixed-effect models. Further, some researchers argue that model averaging 
generally outperforms a single best model, especially when the analyst does not have information on the 
relative performance of the candidate models. Nonetheless, model averaging is based on the assumption 
that all models have certain merits that can contribute to the assembly of the final model, but in reality, it 
might not always be the case. In this paper, the advantages and disadvantages of both approaches will be 
discussed and illustrated. 

 
INTRODUCTION 

WHY IS MODEL COMPARISON IMPORTANT? 
In the past, usually data analysis was a one-shot process. Specifically, a single data set was fed into a 
single modeling process. As a consequence, the model is overfitted to a particular sample (Kuhn & 
Johnson, 2013), resulting in a replication crisis (Colling & Szucs, 2018; Open Science Collaboration, 2015). 
In addition, popular traditional modeling methods, such as regression analysis, have certain limitations. For 
example, the data structure must conform to restrictive assumptions (Yu, 2022b). To address the preceding 
issues, data scientists have to compare multiple models, involving various techniques like neural networks, 
boosting, bagging, support vector machines, and more. In doing so, analysts avoid the risk of placing “all 
eggs into one basket.” Instead, conducting multiple analyses with various data subsets tends to yield a 
more accurate model, echoing the concept of the "wisdom of the crowd" (Surowiecki, 2004). Further, 
modern data science methods are much more versatile than traditional modeling methods. For instance, 
most are non-parametric in essence and require very few or even no assumptions (Yu, 2022a).   

AFTER MODEL COMPARISON: MODEL SELECTION AND AVERAGING  
Model comparison serves as the initial phase of the solution. Once multiple models have been generated, 
the analyst faces the task of determining how to leverage the diverse outcomes. Diversity is key. If all 
modeling results are identical, then this work is redundant because it does not provide additional 
information. Facing different results from different models, the analyst can choose between two courses of 
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action: Model Selection (MS) which retains the best model, or Model Averaging (MA) which synthesizes 
information from multiple models to generate the final model.  

MS and MA are not unique in data science. Before the rise of data science and machine learning (DSML), 
both MS and MA have been implemented in some traditional and Bayesian statistical procedures (Piironen 
& Vehtari, 2017; Raftery et al., 1997). However, in contrast to their DSML counterparts, MS and MA are 
typically confined to a single modeling technique, such as stepwise regression, forward selection, backward 
elimination, and all-subset regression (SAS® Institute, 2020). In this sense, there is not much diversity in 
traditional and Bayesian MS/MA. Indeed, many authors advise against using stepwise regression 
approaches and other traditional MS methods (Burnham & Anderson, 2002; Harrell, 2001; Lavery et al., 
2016; Smith, 2018).  

Both MS and MA come with their own set of strengths and weaknesses, and the analyst's choice depends 
on the specific problem, data, and objectives at hand. While SAS® software product documentation offers 
users in-depth information about various procedures, there is no clear guideline about which one is more 
appropriate. The primary focus of this paper is not to illustrate the procedures of MS and MA, as they are 
already documented; rather, the primary objective is to discuss the efficacy of both MS and MA and suggest 
proper applications for both. The following is an overview of the pros and cons of model selection and model 
averaging (Dietterich, 2000; Hastie et al., 2009; Gao et al., 2016). 

 
ADVANTAGES AND DISADVANTAGES 

MODEL SELECTION 

Advantages:  

1. Simplicity and Efficiency: Model selection simplifies the decision-making process by choosing a 
single "best" model from the candidate models. This can make the chosen model easier to interpret 
and implement. Moreover, it offers enhanced efficiency as it allows for the straightforward exclusion 
of all other models, essentially representing an all-or-none decision. 

2. Interpretability: The selected model is often easier to interpret than an average of multiple models. 
This can be crucial for understanding the relationship between predictors and the target variable. 
The analyst is not required to provide justifications for incorporating predictors or predictor 
information from "inferior" models. 

3. Computational Efficiency: Model selection typically requires less computational resources 
compared with model averaging, because after the top model is selected, no further action needs 
to be taken or considered with all the rest. 

Disadvantages: 
1. Risk of Overfitting: Model selection can lead to overfitting, especially if the selection criterion is 

used to choose the most complex model. Overfit models may not generalize well to new data.  

2. Vagueness of “The Best”: There are different criteria for model selection, namely, R-square, RMSE, 
AIC, BIC, and so forth. While a model is considered the best by a certain criterion, it may be the 
second best when another reference is used. The selection process is subject to the preference of 
the analyst.  

3. Model Uncertainty: One of the most pervasive disadvantages is that it does not account for model 
uncertainty. The chosen model may perform well on the training data, but might not capture the 
true underlying relationship in the data. Nevertheless, while traditional modeling approaches are 
prone to this error, it is less applicable to data science and machine learning, because ensemble 
methods can fine-tune the model by partitioning the data into numerous subsets and running 
repeated analyses on them.  
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4. Ignoring Valuable Information: Model selection discards potentially valuable information contained 
in the other candidate models. This can be a limitation when multiple models have complementary 
strengths. This drawback can be likened to a scenario where a university chooses a team to 
represent the school in a national Jeopardy contest following internal competitions between schools 
and colleges. In this case, the university selects a team from one college but disregards the other 
talents of the "losing" teams. 

MODEL AVERAGING 

Advantages:  

1. Reduces Overfitting: Model averaging mitigates the risk of overfitting by incorporating multiple 
models, enhancing its ability to generalize effectively when faced with unseen data.  

2. Accounts for Model Uncertainty: One of the primary justifications for using model averaging, is that 
it explicitly considers model uncertainty. It acknowledges that multiple models may have similar 
predictive performance but differ in their parameter estimates. 

3. Improved Robustness: Averaging models can lead to more robust predictions, as they smooth out 
individual model idiosyncrasies and errors. 

Disadvantages: 
1. Complexity: Model averaging can be more complex to implement and manage than selecting a 

single model. It requires keeping track of multiple models and their associated weights. 

2. Loss of Interpretability: Averaged models are often less interpretable than individual models. It can 
be challenging to explain how the ensemble of models arrived at a particular prediction. 

3. Increased Computational Cost: Model averaging typically requires more computational resources 
as it involves training and evaluating multiple models. This may not be feasible in situations with 
strict computational constraints. This weakness is of lesser significance today given that high-
performance computing can easily be performed with GPU-enabled computers on the cloud. 

 
CRITERIA FOR EVALUATING MODEL GOODNESS 

Across traditional statistics, the Bayesian approach, and DSML, there are various criteria for evaluating the 
goodness of models, each with its own advantages and disadvantages. The following are some of the 
popular criteria (James et al., 2013): 

F1 Score: It measures accuracy by balancing precision and recall, providing a single metric that 
considers both false positives and false negatives. It is useful for imbalanced datasets where one class 
dominates. However, the F1 score may not be suitable for all scenarios, especially when the trade-off 
between precision and recall needs to be adjusted. 

Generalized R-Squared: It provides a measure of the proportion of variance explained by the model. 
This approach has long been used in traditional regression analyses. It is well known, and thus, easy 
to interpret. Yet, it might not suit complex models featuring numerous predictors, as it tends to amplify 
variance when more predictors are included, even when their contribution to explanatory power is 
minimal. 

RASE (Root Average Squared Error): It measures the difference between predictions and actual values 
which represents the average error magnitude in the original units of the dependent variable. However, 
it is sensitive to outliers and can be influenced by extreme values. Further, it is scale-dependent and is 
not always easy to interpret due to the squared error term. 
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AIC (Akaike Information Criterion), AICc (AIC corrected), and BIC (Bayesian Information Criterion): 
They estimate model quality based on balancing goodness of fit and complexity, but favor parsimony. 
This approach can prevent overfitting, and thus, it is useful for model selection, especially when 
comparing different models. 

Interpretation can be challenging for those not familiar with the theory behind these criteria. The choice of 
the "best" evaluation criterion depends on the specific context. There is no one-size-fits-all answer. The 
most popular criterion may vary across different domains and applications. For example, in classification 
tasks, the F1 score is often used, whereas in models involving a continuous-scaled target variable, R-
squared or mean squared error (MSE) might be more suitable. 
 

MODEL COMPARISON, MODEL SELECTION, AND MODEL AVERAGING IN SAS® 

MS and MA are available in many SAS® products, including JMP® Pro, SAS® Studio, SAS® Enterprise 
Guide®, SAS® Enterprise MinerTM, and SAS® Viya. Due to space constraints, only JMP® Pro and SAS® 
Enterprise MinerTM are discussed in this paper.  
 

JMP® PRO 
Within JMP® Pro, model selection is performed in Model Screening whereas Model Comparison offers the 
choice between model selection or model averaging. After the predicted outcomes for all observations of 
all models are generated, they can be inputted into Model Comparison for further investigation (see Figure 
1).  
 

Figure 1. Model Comparison in JMP® Pro 

 

If the data analyst would like to select the single best model, then different criteria can be examined to 
determine which one is the best. In this example, the bootstrap forest model has the highest Entropy R-
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square (based on purity), the lowest Root Mean Square Error, the lowest misclassification rate, the highest 
AUC, and the lowest standard error (see Figure 2).  

The bottom illustration in Figure 2 shows the test result of the null hypothesis. It is hypothesized that all 
AUCs are not significantly different from each other, but indeed they are. The table “AUC Comparison for 
proficiency = 1” in Figure 2 shows the multiple comparison results (logistic vs. bagging; boosting vs. logistic; 
bagging vs. boosting). All pairs are significantly different from each other. 
 

Figure 2. Model Comparison Results in JMP® Pro 

 
 

Alternatively, the analyst can also use model averaging, which creates a new field of the arithmetic mean 
of the predicted values across models (see Figure 3).  
 

Figure 3. Model Averaging in JMP® Pro 
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JMP® Pro provides a quick tool for model selection, which is known as Model Screening. In this procedure, 
multiple methods are employed to analyze the same data set in tandem. Afterward, a summary table is 
displayed for selecting the dominant model. As shown in Figure 4, the information on model adequacy 
presented by Model Screening is less than that of Model Comparison. In this example, the dominant model 
is XGBoost in terms of both R-square and RASE while the poorest one is the least square regression model. 
However, no model averaging is allowed in Model Screening. 
 

Figure 4. Model Screening in JMP® Pro 

 
 

SAS® ENTERPRISE MINERTM 
SAS® Enterprise MinerTM offers the capability of utilizing both MS and MA techniques. In Figure 5, you can 
observe the utilization of four distinct modeling techniques: neural networks, gradient boosting, regression, 
and high-performance forest. After these methodologies are employed, all results are stored in the Central 
Point for model comparison or Ensemble. The difference between Ensemble and Model Comparison is that 
the former merges all modeling results whereas the latter simply retains the best. Specifically, the Ensemble 
node harmonizes component models derived from these four modeling methods to create the ultimate 
model solution. Specifically, the Ensemble method constructs new models by combining posterior 
probabilities (for class targets) or predicted values (for interval targets) derived from multiple precursor 
models. This newly created model is subsequently employed for scoring new data. Various techniques for 
amalgamating information from diverse models are available: 

● Average: This method calculates the mean of the posterior probabilities (for categorical targets) or 
the predicted values (for interval targets) from different models, offering it as the prediction from 
the Ensemble node. 

● Maximum: The Maximum method selects the highest posterior probabilities (for categorical 
targets) or the maximum predicted values (for interval targets) among the various models, 
presenting it as the prediction from the Ensemble node. 

● Voting: Primarily applicable to categorical targets, the Voting method facilitates the computation of 
posterior probabilities. Two voting methods are available for this purpose: Average and Proportion. 
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Figure 5.  Ensemble and Model Comparison in SAS® Enterprise MinerTM 

 

 
LITERATURE REVIEW 
 

Table 1. Summary of Literature Review Comparing Between Model Selection and Model Averaging 

Author(s) 
and Paper 

Traditional, 
Bayesian, 
or DSML 
Methods 

Criteria for 
Comparison 

Favors 
Model 

Selection 

Favors 
Model 

Averaging 

Either Way 
or 

Inconclusive 

Depends on 
the 

Conditions 

Favors 
Combining 
MS and MA 

Notes 

Aoki et al. 
(2013) DSML AIC & BIC X     

Four methods are introduced 
that combine multiple candidate 
dose-response models: model 
selection, bootstrap model 
selection, model averaging, and 
bootstrap model averaging. 
Bootstrap model selection 
performed best overall. It had 
good accuracy for dose finding, 
decision-making, and estimating 
the probability of achieving the 
target response. MA reduced 
bias compared to just using a 
single-selected model, but was 
still outperformed by bootstrap 
approaches. 

Berge 
(2017) 

Bayesian 
& DSML 

Quadratic 
Probability 
Score & 
ROC/AUC  X    

Four methods are compared: 
equally weighted forecast, 
Bayesian Model Averaging 
(BMA), Linear Boosted Model, 
and Nonlinear Boosted Model. 
BMA and boosted models 
performed much better than 
equally weighted forecasts, as 
they can discriminate between 
useful predictors. 
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Buatois et 
al. (2018) TR AIC  X    

In an informative design, MA and 
MS provided similar predictive 
performances and led to 
accurate prediction of the target 
dose. However, with less 
informative designs, by 
estimating weights for a 
predefined set of NLMEMs, MA 
showed better overall predictive 
performances than MS, 
increasing the likelihood of 
accurately characterizing the 
dose-response relationship. 

Gao et al. 
(2016) TR 

AIC, BIC & 
MSFE  X    

This investigation applied six 
commonly used MS criteria, 
including AIC, BIC, HQC, 
Mallows' Cₚ, LooCV, and LsoCV, 
and six FMA methods, namely 
S-AIC, S-BIC, S-HQC, JMA, 
LsoMA, and AFTER. The MSFE 
(mean-squared forecast error) 
was calculated for each selected 
model and MA method. The 
mean of MSFE was used to rank 
the performance of each 
method, and from the ranking, 
the LsoMA method was found to 
be the best. 

Grainger et 
al. (2018) 

TR, 
Bayesian 
& DSML AIC & AICc     X 

To address the problem of food 
waste, both MS and MA were 
employed to retain the most 
promising models out of 16,384 
potential candidates. 

Gu et al. 
(2018) TR 

AIC, AICc, 
BIC, & 
APRESS     X 

APRESS outperforms AIC and 
BIC when it comes to comparing 
models, making it the preferred 
choice for model comparison in 
nonlinear modeling. While MA 
offers increased predictive 
robustness compared to 
choosing a single model, it is 
advisable to combine both MS 
and MA techniques for nonlinear 
modeling to achieve the best 
results. 

Haggag 
(2014) TR 

AIC, BIC, 
TIC, HQC 
& Mallows' 
Cₚ  X    

Results showed smaller values 
of bias, variance, and PMSE for 
regression coefficient estimates 
of MA than that 
of MS. 

Okoli et al. 
(2018) Bayesian 

AIC & 
RMSE   X   

These authors compared MS 
and two types of MA, arithmetic 
(unweighted) MA and weighted 
MA. When the sample size was 
small, both MS and MA 
outperformed a single model. 
When the sample size was large, 
MS and MA (weighted or 
unweighted) had similar 
variances. 
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Peng & 
Yang 
(2020) 

TR & 
Bayesian BIC   X   

When there is no approximation 
error advantage in linear 
combining, it is unclear whether 
MA improves over MS. In a 
nested linear model setting, the 
paper shows the optimal risk of 
MA can significantly reduce the 
optimal risk of MS when the true 
coefficients decay slowly. When 
coefficients decay quickly, the 
risks of optimal MA and MS are 
asymptotically equivalent. MA 
does not provide benefits when 
the best model size is small 
compared to the sample size. 

Richards et 
al. (2010) TR AIC   X   

The MS approach provides 
substantial benefits in tackling 
complex modeling tasks. While 
MA can improve stability, 
evidence for its impact on 
accuracy remains inconclusive. 

Schomaker 
& 
Heumann 
(2013) TR AIC  X    

MA offers more stable estimates 
than MS in the presence of 
missing data, primarily due to its 
shrinkage properties which 
reduce variance at the expense 
of some bias. 

Schorning 
et al. 
(2016) TR 

AIC, BIC & 
TIC  X    

This study used both candidate 
models (6) and simulations (40). 
Overall from simulations, MA 
outperformed MS methods. The 
benefits were not large but they 
were consistent. 

Symonds & 
Moussalli 
(2011) TR AIC    X  

If one can clearly identify the 
best model, it is appropriate to 
make inferences based on that 
model alone. If not, turn to MA; 
however, there are still certain 
problems and pitfalls in using 
AIC. The so-called best model 
might consist of meaningless 
variables. 

Turkheimer 
et al. 
(2003) TR AIC  X    

MA reduces variance and bias 
compared to selecting a single 
model, especially when the true 
model is not contained in the 
candidate set. It also reduces 
generalization errors when 
applying the model to new data. 
Limitations include increased 
computation and requiring a 
common parameter across 
models. 

Ullah & 
Wang 
(2013) TR 

AIC, BIC, 
Mallows’ 
Cₚ, Cross 
Validation, 
GVY & FIC  X    

Estimation and inference within 
the context of MS often overlook 
the inherent uncertainty 
associated with the selection 
process. This oversight 
frequently results in inefficient 
outcomes and confidence 
intervals that can be misleading. 
Conversely, MA mitigates model 
uncertainty. 
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Verrier et 
al. (2014) TR 

AIC, BIC & 
Bayesian   X   

The authors are not explicit on 
which method is preferred; 
however, it seems to lean 
towards MA. This article focuses 
more on the modeling of the 
entire curve as an alternative. 

Wheeler & 
Bailer 
(2009) TR AIC & BIC    X  

It depends on the model space 
chosen. MA procedure averaged 
estimates from each of the 9 
models’ functional forms and not 
based on the average of 
individual models themselves. 

Yang et al. 
(2022) TR RMSE   X   

Monte Carlo simulation results 
demonstrate strong performance 
for both the MS and MA 
estimators in finite samples. 
Notably, the MS estimator 
exhibits asymptotic optimality, 
implying its efficiency is on par 
with the unattainable estimator 
utilizing the optimal spatial 
weights matrix in the limit. 

Zhang et 
al. (2006) TR 

Maximum 
Likelihood 
Method & 
AIC  X    

MS is limited to a subset of time-
reversible models of nucleotide 
substitutions; therefore, MA can 
reduce biases arising from MS. 

Zhang et 
al. (2012) TR 

AIC, BIC & 
FIC   X   

The authors used both Tobit 
models and Monte Carlo 
simulations. There are merits in 
MA estimators over MS 
estimators, but it is not 
conclusive. 

TOTAL   1 9 6 2 2  

 

Table 1 displays a summary of the literature review. This review is by no means comprehensive; 
nonetheless, it is still a fair representation of the diverse perspectives of MS and MA. Surprisingly, only a 
few of these discussions are contextualized within the field of DSML. Rather, most are concerned with 
traditional or Bayesian statistics. Hence, this literature gap awaits further investigation.  

Nine of the 20 papers reviewed endorsed model averaging, six were inconclusive or said either was fine, 
two favored contextual usage, and two recommended combining the two. Only one favored model selection. 
However, it is important to note that this vote count is tallied by mixing MS and MA in traditional statistics, 
Bayesian statistics, and DSML. When considering only the articles related to DSML, it became evident that 
all of them preferred MA to MS.    

Second, it was found that most studies comparing MS to MA overwhelmingly relied on AIC, BIC, or both. 
This implies that the avoidance of overfitting and preserving parsimony has become the dominant goal 
across the realms of traditional statistics, Bayesianism, and DSML. The phenomenon that analysts and 
researchers fully embrace AIC and BIC is understandable. As mentioned before, both AIC and BIC lean 
toward simplicity and penalize complexity. It can be explained by the fact that parsimony aligns with the 
principle of Occam's razor (Gamberger & Lavrač, 1997), suggesting that simpler explanations or models 
are generally preferred unless there is strong evidence to the contrary. This principle has a long history in 
the philosophy of science and is almost universally accepted.  

Unlike complex models that are more sample-dependent, simpler models are more likely to generalize to 
new data and new contexts. Following this line of reasoning, simpler models are often more interpretable, 
making it easier to understand and communicate the relationships between variables. A model's 
interpretability is particularly important in fields like medicine, finance, and social sciences where decisions 
are made based on its interpretation. In contrast, complex models with many parameters, if not properly 
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regularized, can lead to overparameterization. When models are overparameterized, they can be 
computationally infeasible to train and may fail to converge to meaningful results. Following this line of 
reasoning, the popularity of AIC and BIC is understandable.  

 
DISCUSSION 
Although most researchers count on AIC and BIC for model comparisons, there is no single "best" metric. 
The "best" criterion depends on the objectives. If the analyst aims to maximize predictive accuracy, one 
might focus on criteria like mean squared error (MSE) or root mean squared error (RMSE). If the researcher 
wants to balance model fit and complexity, AIC or BIC might be appropriate. In both theory and practice, it 
is often advisable to consider multiple evaluation criteria, especially when comparing different models. This 
can provide a more comprehensive view of a model's performance, taking into account different aspects 
like accuracy, precision, recall, model complexity, and more.  

Despite the fact that the majority of researchers prefer MA to MS, it is our conviction that choosing between 
MS and MA depends on the goal and availability of time and/or resources.  

Generally speaking, model selection should be considered: 

● When the goal is to identify a single model that can be used for both prediction and inference. 

● When the number of candidate models is small. 

● When the computational resources are limited. 

On the other hand, model averaging should be taken into account: 

● When the goal is to improve the predictive performance of the model. 

● When the number of candidate models is large. 

● When the computational resources are available. 

Further, MA is based on the assumption that all models have certain merits that can contribute to the 
assembly of the final model, but in reality, it might not always be the case. Put bluntly, when traditional 
models, such as OLS regression models and stepwise regression models, are compared against their 
DSML counterparts, in most cases they are ranked at the bottom in terms of various criteria. In this case, it 
might not be beneficial to implement MA by incorporating less accurate predictors from these models. 
Further, domain knowledge plays a crucial role in MS and MA. If the so-called best model or final model 
carries variables that do not make sense (e.g., eating more ice cream can improve academic performance), 
then the analyst should toss out the variables no matter how good the numbers are and select the second-
best model instead.  

There is no definitive solution; there is always a trade-off. The researcher should consistently pose this 
question: Does the additional work required for model averaging, in terms of time and effort, yield a 
significantly superior result compared to the single best model? Regardless of what the response might be, 
model selection and model averaging are not mutually exclusive. The analyst can use model selection to 
choose a subset of candidate models, and then use model averaging to combine the predictions of those 
models. It is advisable to do so because the models near the bottom of the list might not have valuable 
information that is worth considering. 
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