
Examples of data manipulation in SAS:  
Filling in “known” missing data 

Chong Ho Yu, Ph.D. 
Arizona State University, Tempe AZ 85287 

 
 
ABSTRACT 
On many occasions analysts encounter the problem of missing data. The objective of this presentation is not to 
address issues associated with “unknown” missing data; rather, the focus centers on “known” missing data that 
become a hindrance to data processing. Consider this example: In an exam, item responses are stored in the format 
that each response of each respondent occupies a row (tall structure). When some subjects skip items, these item 
responses should be considered wrong answers. However, due to a design flaw, these rows are omitted rather than 
being stored as a blank response. Consider another example: In a study when the same subject re-takes the same 
exam, constant values of the same subject should be inherited from the previous records. However, for some reason, 
this inheritance function was not turned on in the database. As a remedy, this presentation demonstrates two SAS 
programs for auto-filling in missing data based on known values.  
 
INTRODUCTION 
On many occasions analysts encounter ill-structured data, such as missing data. The objective of this presentation is 
not to address issues associated with “unknown” missing data; rather, the focus centers on “known” missing data that 
become a hindrance to data processing. One common source of error is use (or misuse) of the tall structure. Another 
problem is the omission of inheritance from the previous records.  
 
TALL STRUCTURE VS. WIDE STRUCTURE 
In most cases, a data set is structured as a R X C matrix, in which each row of data represents a subject’s responses 
to all items, and each column represents the values of an item filled in by all subjects. This configuration of data is 
known as the wide structure. Table 1(a) is a typical example. In the wide structure, usually it is easy to spot missing 
data. In this example, subject 2 did not answer Item 2 and Item 4, even though no code for missing data (e.g. “.” or 
“9”) is used.  
 
 
Table 1(a). R X C matrix in the wide structure (b) The wide structured data set in text format 
 

(a) (b) 
ID Item 1 Item 2 Item 3 Item 4 Item 5 

Subject 1 1 2 3 3 2 
Subject 2 1   1   2 
Subject 3 1 2 1 3 2 
Subject 4 2 2 3 3 2 
Subject 5 1 2 3 3 2 
Subject 6 1 1 3 3 2 
Subject 7 1 2 3 3 2 
Subject 8 2 2 3 4 4 
Subject 9 1 2 3 4 4 
Subject 10 1 2 3 3 2  

 
12332 
1 1 2 
12132 
22332 
12332 
11332  
12332 
22344 
12344 
12332 

 
 
Table 1(b) is a typical example of a wide structured date set in text format. However, sometimes the item responses 
may be more than one digit or one character, such as responses to multiple-choice-multiple-answer items (e.g. check 
all that apply) or open-ended questions. If the tall structured data are stored in a spreadsheet, as what is seen in 
Table 1(a), then this is not a problem.  But when  the data are  formatted as a text file as what you see in Table 1(b), 
then it is impossible for one column to store more than one digit or one character. When a long string appears in the 
item response, a tall structure is necessary. Table 2 is an example of a tall-structured data set: 
 
Table 2.. Wide structured data set for storing long item responses 
 
Subject 1 Item 1 (Check all that apply 124 
Subject 1 Item 2 (Short answer) SAS is the best! 
 
 



 
Usually the tall structured data are raw responses, which may be useful for distracter analysis (to examine what type 
of subjects choose which options) and qualitative analysis (to code the answers of open-ended questions into 
different categories). For these two types of analysis, missing data are not detrimental.  However, problems develop 
when the responses in the tall structured data set are scored and then transposed to a wide structured data set. If 
there are missing data, this transposition will yield inaccurate data.  
 
Table 3.. A wide-structured data set in text format transformed from a tall structured data set 
 
5084846 11111111111011101111 
5019469 1110111111 
5019448 11011111111011111101 
5019498 1111111111101101 
5080307 11101111111111011101 
5019361 11111110101011011101 
5080612 11111110101011101101 
5019424 10011110011111111101 
5019378 11111100111011011101 
5080611 11111110110011101100 
 
In Table 3, subject 2 did not answer half of the items in the test, and subject 4 omitted four items. If this had been a 
speed test, it is possible that the examinees ran out of time and thus were unable to finish the test. But if there was no 
time limit for the test, it is unlikely that both subjects only skipped the items near the end. When you compare the 
preceding matrix with the tall structure, you may find that the missing responses scatter all over the exam. However, 
the tall structure did not capture the non-response; thus, rows for missing data never existed. During the 
transposition, the blanks in the middle are “pushed” by other item responses. As a result, it appears that both test 
takers did not answer the items near the end. Fortunately, you can find out which data are missing by comparing the 
wide structure with the tall structure. However, this is a time-consuming process that requires fixing all of the records 
by hand. In the following, a SAS program will be introduced to remediate this problem of “known missing data” in an 
efficient fashion. For simplicity of the illustration, only three subjects and five items are included in the following 
example (Table 4). 
 
Table 4(a). A tall structure with missing data; (b) A wide structure with coded missing data. 
 

(a) (b) 
User ID Item ID Score 

123 Q1 4 
123 Q2 2 
123 Q3 3 
123 Q4 4 
124 Q1 3 
124 Q2 4 
124 Q4 4 
125 Q2 2 
125 Q3 1 
125 Q4 4  

User ID Q1 Q2 Q3 Q4 Q5 
123 4 2 3 4 . 
124 3 4 . 4 . 
125 . 2 1 4 .  

 
 
Table 4(a) depicts a data set consisting of five items. Question 5 is skipped by all examinees while the other items 
are skipped by only some of the examinees. It is easy to manually convert 5(a) to 5(b) when there are only five items 
and three subjects. However, this process will be extremely tedious when there are 50 items and 3,000 examinees. 
Therefore, an automated method is introduced. 
 
In the tall structure, the ID of each person will be duplicated n times, where n is the number of items. To automate the 
clean-up process, first you need to create a file to retain unique IDs only: 
 

data idfile; set rawdata; 
    proc sort nodupkey; by userid; run; 

 
Second, create another file to make each subject carry 5 rows (items). In this example I use five items only. Please 
replace the number with your own number of items. This array will assign a fake ID (FID), which is just the ascending 
order (1-5), to each row: 



 
data idonly; set idfile; 
 
    array XX(5) X1-X5; 
        do fid=1 to 5; 
        x=xx[fid]; 
        output; 
    end; 
 
    drop x1-x5 x itemid rawscore; 
    proc sort; by fid; run; 

 
Next, sort the raw data for the merging procedure in a later stage: 
 

data score; set rawdata; 
    proc sort; by userid itemid; run; 

 
Then, import a file listing the FID and all item IDs, including those that no one answered. Merge the ID file and item 
file so that every subject carries five items regardless of whether they have missing data. 
 

data item; set formitem; 
    proc sort; by fid; run; 

 
data iditem; merge idonly item; by fid; 
    proc sort; by userid itemid; run; 

 
After the raw data and the iditem file are merged, missing values should also show up. The FID can be used to check 
whether every subject has exactly five items.  
 

data realdata; merge score iditem; by userid itemid; run; 
    proc sort; by userid itemid; run; 

 
Last, transpose the data to make each row represents a subject with answered and non-answered items: 
 

data transpose; set realdata; by userid itemid; 
    length i1-i5 $8; 
 
    array scores s1-s5; 
    array inames $ i1-i5; 
        retain s1-s5 i1-i5 n; 
        if first.userid then n = 1; 
        scores(n) = rawscore; 
        inames(n) = itemid; 
        n = n+1; 
        if last.userid then output; 
run; 

 
 
Table 5.. Repeated measures data without inheriting repeated values 
 
username age attempt score 
Alex 29 1 100 
Alex   2 98 
Alex   3 97 
Alex   4 100 
Jody 27 1 99 
Jody   2 78 
Jody   3 100 
Jody   4 97 
Jody   5 96 

 
 
 



 
OMISSION OF INHERITANCE 
Now consider another case: You collected data yielded from a repeated measures design, in which the examinees 
took the same tests several times. However, the data entry person only entered the age of the subject during the first 
attempt into the database. You would like to fill in the missing cells of the field "age" according to the value of the first 
instance for each subject. Some subjects took four trials, some took five, and some took even more. This is another 
case of “known missing data”. 
 
It would be easy to fix the problem by hand if there were only two subjects and nine rows. But in reality the dataset 
might have more than 1000 rows. Again, this situation necessitates automation. The following macro function is very 
simple yet it accomplishes this purpose. Let's name the preceding table as data "one" and all manipulation is 
performed in dataset "two." The lag function inherits the previous value in the field "age" and puts it into the next row 
and a new variable named "temp." In the next row, if "age" is empty, then its value will be replaced with the one in 
"temp," which is copied from the previous "age." Please note that the do loop is set to run five times even though you 
only have four attempts. Actually, the function still works even if you set the loop to run ten times. If you are not sure 
about the maximum number of attempts, enter a large number in the do loop. The output will look like Table 6: 
 

data two ;set one; run; 
%macro fillin; 
%do i = 1 %to 5; 
data two; set two; 
temp =lag(age); 
if temp NE " " and age = " " then age = temp;  
run; 
%end; 
%mend fillin; 
%fillin; 

 
Table 6. Repeated measures data with inherited values 
 
username age age score temp 
Alex 29 29 100   
Alex 29   98 29 
Alex 29   97 29 
Alex 29   100 29 
Jody 27 27 99 29 
Jody 27   78 27 
Jody 27   100 27 
Jody 27   97 27 
Jody 27   96 27 

 
CONCLUSION 
The preceding SAS codes can be customized to handle other problems of a similar nature. Nonetheless, being 
proactive is always better than reactive. The best defense strategy is an offensive one. Rather than waiting for a 
disaster to happen and then writing SAS codes to patch the hole, in the beginning, the data analyst should implement 
error-checking codes to ensure data integrity. For example, if a database storing tall structured data does not capture 
blank answers, the issue should be addressed before it becomes a problem.  Similarly, in a repeated measures 
design, two tables should be used to separate user demographic information from the test scores. In this way, the 
subject demographic information can be entered only once and then a one-to-many relationship can be established 
by a primary key (e.g. subject ID) to join the two tables. 
 
ACKNOWLEDGMENTS 
Special thanks to Dr. Thompson Marilyn and Dr. Kristina Kuppanoff for their valuable input in developing the source 
code. 



CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  Contact the author at: 

Chong Ho Yu, Ph.D. 
Director of Testing, Measurement, Assessment, and Research 
Applied Learning Technology Institute 
Arizona State University 
3S89 Computing Commons 
Tempe, AZ 85287-0101 
USA 
Work Phone: 480-727-0670 
Email: chonghoyu@gmail.com 
Web: www.creative-wisdom.com  

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   
 
Other brand and product names are trademarks of their respective companies.  
 


