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ABSTRACT 

In spite of the growing popularity of the item response 
theory (IRT), classical item analysis (CIA) is still frequently 
employed by psychometricians and teachers for its 
conceptual and computational simplicity. This article will 
introduce how SAS can be applied to CIA such as 
computing p-values, discriminations, point biserial 
correlations, and logits. In addition, option analysis, which 
is helpful to both IRT and classical analysis, will be 
discussed. The purpose of option analysis is to examine 
clarity and plausibility of distracters in multiple-choice 
items.  
 
INTRODUCTION 

Although today the item response theory (IRT) is 
arguably the pre-dominant measurement model, classical 
item analysis (CIA) is still frequently employed by 
psychometricians, test developers, and teachers for a 
number of reasons. First, concepts of CIA are simpler than 
that of its IRT counterpart. Users without a strong statistical 
background could easily interpret the results without going 
through a steep learning curve. Second, CIA could be 
computed by many popular statistical software programs, 
including SAS, while IRT necessitates use of specialized 
software packages such as Bilog, Winsteps, Multilog, 
RUMM, Parscale, and Conquest. Several software 
packages on  the market, such as Iteman and Bilog 
(Phase 1 output) are capable of computing CIA; 
nevertheless, SAS could also be used for producing 
comparable output. In this article, CIA will be explained 
conceptually and procedurally. In addition, option analysis, 
which could be helpful to both IRT and classical analysis, 
will be discussed. The purpose of option analysis is to 
examine clarity and plausibility of distracters in 
multiple -choice items. 
 
WHAT IS CLASSICAL ITEM ANALYSIS? 

Classical Item Analysis , also known as classical test 
theory (Novick, 1966; Lord & Novick, 1968), has been 
employed by researchers  for several decades. Like most 
other classical statistics, CIA aims to make inferences from 
a sample to a hypothetical population such as estimating 
the true parameter in that population. In addition, CIA is 
based on the true score theory, which views the observed 
score as a combination of the true score and error. The 
true score reflects what the examinee actually knows, but it 
is always contaminated by different sources of errors. In 
this sense, test reliability is expressed as a ratio between 
the true score variance and the observed score variance. 
Since all sample statistics from CIA are estimates of 
population parameters, CIA tends to be sample-dependent. 
In other words, item attributes may depend on examinee 
attributes, and vice versa. Discussion of concepts and 
computational procedures of test reliability could be found 
in Yu (2001). In this article the focus is placed on item 
difficulty, item discrimination, Point-biserial, and logit. 
 
ITEM DIFFICULTY AND ITEM DISCRIMINATION 

One of the major statistics in CIA is the item difficulty, 

which is expressed in terms of the pass rate. If the score is 
dichotomous, the possible values of the pass rate will 
range from 0 to 1. This pass rate is also known as the 
p-value. In SAS, PROC MEANS or PROC SUMMARY 
could be employed to compute the pass rate for each item, 
depending upon how the data set is structured. For 
example, if the data set is organized as an N * P matrix, 
where N is the subject dimension and P is the item 
dimension, PROC MEANS is definitely appropriate. If the 
scores are structured in one dimension so that a single 
variable contains the score for each item by each subject, 
as shown in Table 1, then PROC SUMMARY is a better 
way of computing the pass rate. 
 
Table 1. Scores structured in one dimension 
 

Subject Item Score 
Subject 1 Item 1 1 
Subject 1 Item 2 0 
Subject 1 Item 3 1 
Subject 2 Item 1 1 
Subject 2 Item 2 1 
Subject 2 Item 3 0 
 
The following is an example of the usage of PROC 
SUMMARY:  
 
proc summary; class item; var score; 

output out=filename mean=passrate std=std 
n=samplesize; 
 

The preceding procedure will return the pass rate of 
each item as depicted in Table 2. 
 
Table 2. Item difficulty in terms of pass rate. 
 
Item Pass rate 

(p-value) 
Item difficulty 

Item 1 0.90 Easy 
Item 2 0.50 Just right 
Item 3 0.10 Difficult 
 

However, the above item difficulty does not tell us how 
different types of examinees answered these questions. To 
be specific, if many people failed to answer particular items 
correctly, are those people novices or experts? Could 
those items discriminate examinees who have high 
proficiency of the subject matter from those who don’t?  

To obtain the information regarding discrimimation, we 
must first classify examinees into three groups: novice, 
expert, and neither. There are numerous ways to perform 
this kind of classification, but none is universally accepted. 
For example, the software package Iteman considers the 
top 20 percent of subjects as experts and the lowest 20 
percent as novices. Kelley (1939) suggest that using the 
upper and lower 27% is a robust way for computing 
discrimination. But some accepts the top and bottom 30%. 



Figure 1. Stem/leaf plot and Boxplot. 

 
I adopt the method of putting subjects above the third 

quartile (Q3) in the expert group while assigning subjects 
below the first quartile (Q1) to the novice group. Subjects 
within the Inter-Quartile Range (IQR = Q3-Q1) are treated 
as average (neither expert nor novice). In SAS, one can 
use PROC UNIVARIATE PLOT to get this information as 
shown in Figure 1.  

Figure 1 shows a stem/leaf plot and a box/whister plot 
(Tukey, 1977), also known as boxplot. Basically, a 
stem/leaf plot is a horizontal histogram. This discussion will 
concentrate on the boxplot. In the boxplot, the “box” 
includes subjects who are between Q3 and Q1. This 
distance is known as the Inter-Quartile Range (IQR). In this 
analysis, examinees whose scores fall along this range are 
treated as average students. The upper edge of the box is 
Q3, and subjects whose score is above this line are treated 
as “experts.” The lower edge of the box is called Q1, and 
examinees whose score below this line are regarded as 
“novices.” The steam/leaf and box/whisker plots are helpful 
in visualizing the overall score distribution and detecting 
outliers. The two “tails” attached to the box are called 
“whiskers,” which are constructed by multiplying IQR by 
1.5. Scores located outside the whiskers are viewed as 
outliers. In this example no outliers are spotted. Although 
the stem/leaf plot and the box/ whisker plots are useful in 
visualization, it may be difficult to see the exact values of 
Q1 and Q3 from the plots. 

Fortunately, PROC UNIVARIATE PLOT also produces 
text-based reports as shown in Table 3. Table 3 indicates 
that the cut-off for distinguishing expert from average is 41 
and the cut-off for average and novice is 27. 
 
 
 
 

Table 3. Quantile Information. 
 

Quantiles (Definition 5) 

Quantile Estimate 

100% Max  60 

99% 55 

95% 50 

90% 47 

75% Q3 41 

50% Median 34 

25% Q1 27 

10% 21 

5% 17 

1% 12 

0% Min 8 

 
After assigning examinees into different groups 

according to their competency, we can compute the pass 
rate by group, as shown in the following example of SAS 
code. The item discrimination is defined as the p-value of 
the expert group subtracted from  that of the novice group.  
 
data two; set one; 
 if totalscore => 41 then group = "expert"; 
 else if totalscore <=27 then  group ="novice"; 
 /* Insert codes here to compute the pass rate 
of each item by group.It depends on how the data set 
is structured */ 
 discrimination = highmean - lowmean; 



The preceding procedure will yield results as shown  
in Table 4. 
 
Table 4 Item discrimination table. 
 
Item Expert group 

pass rate 
Novice group 

Pass rate 
Item discrimination Judgment 

Item 4 0.90 0.10 +0.80 High 
Item 5 0.70 0.60 +0.10 Low 
Item 6 0.10 0.10  0.00 No 
Item 7 0.90 0.90  0.00 No  
Item 8 0.30 0.70 -0.40 Negative 
 

Table 4 shows that Item 4 has a high discrimination 
while Item 5 has a low one. Both Item 5 and Item 6 have 
zero discrimination but the causes  may be totally different. 
Item 6 seems to be extremely difficult and thus regardless 
of what the ability level is, the probability of giving the 
correct answer is low. Item 7 is exactly opposite. This 
question is extremely easy, and thus no matter how much 
or how little one knows, the probability of answering it 
correctly is very high. Item 8 is very problematic because 
experts tend to give the wrong answer while novices tend 
to give the right answer. There are a number of possible 
factors: (a) the key is incorrect, (b) the wording of the 
question and multiple-choice options is confusing, (c) the 
item is located near the end of a speed test, and the 
difference is due to a random fluctuation (guessing). The 
test developer could not rely on the numbers alone to 
determine the cause, and thus option analysis is necessary. 
Option analysis will be discussed in a later section. 

 
Figure 2. Bar chart of item score by group. 

 
However, when the size of high group or the low group 

is small, the item discrimination should not be trusted 
without reservation. For example, even if in one item the 
high group mean is .13 and the low group mean is .33, and 
thus the item discrimination is -.20, it does not necessarily 
mean that this item favors novices. When one examines 
the bar chart by group, one could tell that this impression is 
misled by the samll sample size in the novice group (Figure 

2). To avoid this type of misinterpretation, besides 
analyzing the numeric output, it is advised that the 
researcher also examinee the frequency of the two groups 
by a bar chart by group. Since the same SAS code will be 
reused for many items, writing the code as a macro is more 
efficient: 

 
%macro chartbar(itemid); 
PROC gchart; 
  vbar3d &itemid / group=group discrete type=freq 
freq; 
run; 
%mend chartbar;  
 
LOGIT 

In CIA, the logit is another common statistic. The 
purpose of using the logit is to avoid misinterpretation of 
results based upon raw percentages. The difference 
between two items in terms of difficulty near the midpoint of 
the test (e.g . 50% and 55%) does not equal to the gap as 
two items at the top (e.g. 95% and 100%) or at the bottom 
(5% and 10%). Take weight reduction as a metaphor: It is 
easier for me to reduce my weight from 150 lbs to 125 lbs, 
but it is much more difficult to trim my weight from 125 lbs 
to 100 lbs. However, people routinely misperceive that 
distances in raw percentages are comparable (Bond & Fox, 
2001). As a remedy, the logit is used to convert the raw 
score to its natural logarithm. In this approach, distances 
from different ranges in the scale are comparable. Logit is 
the natural log of the odds ratio, which is the ratio of the 
probability of success and the probability of failure. For 
example, if 70% of the examinees answered the item 
correctly, the odd of getting the right answer is 7- to 30. In 
algebraic terms it is expressed as: 
 

Logit = Log(Passrate/ 1 – Passrate) 
 

In SAS the logit can be computed by the above 
equation since log is a built-in function in SAS. Some 
programs such as Bilog divide the logit by 1.7 in order to 
make the Logit model and the Probit model comparable. 
You may notice that the odds ratio could also be found in 
the results of a logistic regression (see Figure 3). Although 
the two contexts are different, the concepts are essentially 
the same. In logistic regression the researcher is interested 
in learning whether the regressors could predict a 
dichotomous outcome (e.g. pass/fail). In this case the odds 
ratio indicates the “odds” of passing and failing. By the 
same token, in item analysis the test developer is 
concerned with the odds of answering this item correctly 
and incorrectly. The logit tells us this information. 



 
Figure 3. Odds ratio in logistic regression 
 

.  
 
POINT-BISERIAL 

In CIA the test developer cares about not only 
individual items, but the test as a whole, and therefore 
item-total correlation is an important piece of information. 
To be specific, if the response pattern of the item does not 
conform to all other items, this question may be 
problematic. Besides the reliability measure in terms of 
internal consistency, the point-biserial correlation 
coefficient, which is the correlation coefficient between the 
item and the total, is also an indictor for this kind of 
diagnosis. Like the Pearson coefficient, the point-biserial is 
also a product-moment correlation coefficient. However, 
the Pearson coefficient is used for computing the 
relationship between two continuous -scaled variables, 
whereas the point-biserial is applicable to the relationship 
between one binary variable and one continuous -scaled 
variable. In the case of CIA, the individual item is a 
dichotomous variable, in which only 1 or 0 is a possible 
value, and the total is a continuous -scaled variable, in 
which scores of all items are summed.  

 
Table 5. Frequency table showing selection of options. 
 

Item 7: Which group is the biggest threat to world peace? 

Optio
n 

Label Coun
t % Bar 

A  Federatio
n  33 41.2

5 

B Vulcan 3 3.75 
 

C The Borg 30 37.5 
 

D Ferengi 11 
13.7

5  

E Q 3 3.75 
 

 
Usually values of the point-biserial lie between -1 and 

+1. But in CIA it is unlikely to exceed 0.75 or to fall below 

-0.10 (Wilnut, 1975). When the point-biserial is negative, it 
could be caused by using a wrong key or putting 
ambiguous words into the item. Since point-biserial is a 
type of product moment correlation coefficient, one can use 
PROC CORR to compute it.  

It is important to note that biserial and point-biserial 
are conceptually and computationally different though their 
names look similar. Unlike the point-biserial, the biserial is 
not a product-moment correlation; it is less likely to be 
influenced by the item difficulty (du Toit, 2003). Moreover, 
the biserial correlation may be systematically larger than its 
point-biserial counterpart (Crocker & Algina, 1986). 
 
OPTION ANALYSIS 

The preceding statistics are necessary, but insufficient 
for diagnosing a test. The test developer must pay close 
attention to how examinees select different options in order 
to enhance the test. Let’s look at Table 5. In Item 7 the 
correct answer is “C” and the pass rate is acceptable 
(0.375). Thus, by looking at the pass rate alone, one may 
not notice that this question needs revision. As you may 
notice, 41.25% examinees selected “A” as their answer 
and viewed the Federation as a bigger threat. Perhaps 
option A could  arguably be an acceptable answer. To 
avoid confusion, the test developer might consider either to 
drop option A or to replace it with another distracter. 

Although one can use PROC FREQ to obtain a 
frequency table of responses for each item, it is tedious to 
check each frequency table against the key especially 
when a test is composed of many questions. One way to 
make this task more efficient is to compare the pass rate 
and the percentage of the most often chosen option for 
each question. If the two numbers are different, the 
program will put a flag on that item. For example, in Item 7 
the pass rate is 37.5% but the proportion of the most 
popular option is 41.25%. Thus this item will be marked for 
further examination. On the other hand, if the two numbers 
match, it means that the right answer is selected by most 
examinees. The SAS code in the next page is an example 
for this type of detection. It is assumed that the data set of 
the raw data is structured in a way that a single variable 
contains responses of each item by each subject.

 



Table 6. Frequency table showing unused options. 
 

Item 8: Question: Which of the following vehicles is the most dependable? 
Option Label  Frequency Percent Bar 

A * Mercedes Benz 77 96.25 
 

B Dodge Neon 3 3.75 
 

C Kia 0 0.00  
D Yugo  0 0.00  

 
/* Concatenate the itemid and the responses */ 
data rawdata; set rawdata; 
temp=item||resp; 
proc sort data=rawdata; by itemid; 

run; 
/* output the frequency tables of responses for all 
items to a comma delimited file (csv) */ 
ods csvall file="freq.csv"; 
proc freq data=rawdata; tables temp; by itemid; run; 
ods csvall close; quit; 
/* import the csv file into SAS */ 
PROC IMPORT OUT= WORK.READCSV  
DATAFILE= "freq.csv"  
DBMS=CSV REPLACE; 
GETNAMES=NO; 
DATAROW=8;  

RUN; 
/* Read the imported file, separate the itemid from 
the raw responses */ 
data freq; set readcsv; 
itemid = substr(var1,1,5); 
response=substr(var1,6,10); 
response=compress(response); 
 
itemid=compress(itemid); 
rename var2=frequency; 
rename var3=percent; 
rename var4=cf; 
rename var5=cp; 
drop var1; 

run; 
/* Clean up the blank lines */ 
data freq; set freq; 
if cf =" " then delete; 
if itemid = " " then delete; 
if response = " " then delete; 

run; 
/* find the most often chosen option */ 
data most; set freq; 
most=percent/100; 
proc sort nodupkey; by itemid descending most;  

run; 
/* Merge the dataset "most" with the dataset  
carrying the pass rate, flag the item if the two 
numbers do not match */ 
 

Now let’s examine another type of problem that could 
be observed in option analysis (see Table 6). Item 8 
appears to be an easy question because 96.25% of 
examinees chose the right answer. We can see that the 
problem is due to implausible distracters. No person picked 
“Kia” and “Yugo”; only 3.75% chose “Dodge Neon.” This is 
probably because the test was administered in America 
and Germany (Mercedes Benz owns 50% of Chrysler). If 
Options B-D are “Lexus,” “BMW,” and “Cadillac,” it will 
require some knowledge to determine which choice is the 
correct answer. Needless to say, comparing a Mercedes 

with Neon, Kia and Yugo would definitely give the right 
answer away. Although one could use PROC FREQ to list 
all responses in a table for spotting unused options and 
implausible distracters, again, it is tedious when the test is 
long. A more efficient way is to let SAS count the number of 
used options for each item, and then find the difference 
between the number of available options and the number 
of used options. The following is an example of how to use 
SAS for counting used options: 
 
/* Count how many options are used. Set the counter 
to 0 when an unique itemid is found. Increment the 
counter until seeing a new itemid */  
data freq; set freq; by itemid; 

if first.itemid then  
f=0; 
f+1; 
proc sort; by descending f itemid; 
proc sort nodupkey; by itemid;  

run; 
 
SUMMARY 

Although CIA is fairly simple in terms of 
conceptualization and computation, it is crucial to 
emphasize that the statistics, including item difficulty, item 
discrimination, logit, and point-biserial, are not sufficient in 
conducting test diagnosis. On some occasions an 
acceptable pass rate might mask the problem of a 
misleading option. Further, when some anomaly occurs, 
the number alone may not be informative enough to find 
the root cause of the problem. For example, if negative 
item discrimination or a negative point-biserial is found, it 
could be due to a wrong key or some other reasons. CIA 
and option analysis must be applied together for a 
thorough analysis. The SAS code introduced in this article 
may alleviate some repetitive steps.  
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