Automated and Interactive Model Screening to Identify the Champion Model

Chong Ho Yu, Ph.D., D. Phil. Professor and Director of Data Analytics Azusa Pacific University 2021 IM Data Conference

A plethora of DSML methods

• Single methods (non-ensemble)

- Support vector machine (SVM): linear, polynomial kernel, radial basis function (RBF), sigmoid.
- Naïve Bayes
- Decision tree: C5, Chi-square automatic interaction detection (CHAID), Quick, unbiased, efficient statistical tree (QUEST), Classification and regression tree (CRT)

A plethora of DSML methods

- Ensemble method
 - Bagging
 - Random forest
 - Boosting: Gradient boosting, XGBoost, Adaboost, LightGBM, CARboost
- Neural network

Which one should I use? Any consensus?

- Neural network is a black box; it is hard to interpret.
- In some situations, bagging outperforms boosting whereas in others the outcomes are reversed (Chandrahasan et al.2011, Dietterich 2000, Khoshgoftaar et al. 2011, Kotsiantis 2013, Wang et al. 2015, Zaman and Hirose 2011).
- The difference is minimal. In a study comparing between random forest and XGBoost in breast cancer risk prediction, random forest achieved 74.73% accuracy while XGBoost obtained 73.63% (Kabiraj et al. 2020).
- XGBoost is more widely used than gradient boost and Adabost because of its higher accuracy, faster speed, and less sensitivity to noisy data (Deng et al. 2020, Niu 2020).

Model screening/Model comparison

- Run multiple models and select the champion model.
- Automatic or interactive (more human intervention)
- Two demos/illustrations
 - Classification problem (the DV is binary)
 - Regression problem (the DV is continuous)

Classification problem

- JMP Pro
- Predict diabetes
- It is always a good practice to include traditional statistical procedures as the baseline (e.g. logistic regression). You may be surprised!

Classification problem

- Based on multiple criteria, the best two models are logistic regression and SVM.
- The bottom one is Naïve Bayes.
- But don't take it as final!

📴 Diabetes - Model Screening of	Y Binary -	JMP Pro				_		\times
File Edit Tables Rows Cols	DOE A	nalyze Gra	ph Six	Sigma Tools	Tools	Add-Ins	View	
Window Help								
		🗎 🖞 🐴	÷ 🕴	? 🕆 🙂	1 🖤 🥑	۶ ۹	+ 🖉	T .
✓ ■ Model Screening for Y	Binary							
Table: Diabetes Response: Y E	Binary Vali	dation: Vali	dation					
⊿ Details								
Partition for Y Bina	ry							
Bootstrap Forest for	or Y Bina	ry						
Boosted Tree for Y	Binary							
Naive Bayes								
Support Vector Ma	chine							
SGBoost								
Nominal Logistic Fi	it for Y B	inary						
Generalized Regres	sion for	Y Binary	= High	1				
▷ Training		-	-					
⊿ Validation								
		Entrony	Miscla	ssification			Genera	alized
Method	N	RSquare	Miscia	Rate	AUC	RASE	RSo	quare
Nominal Logistic	133	0.3886		0.1504	0.8950	0.33448		0.5329
Generalized Regression Lasso	133	0.3886		0.1504	0.8947	0.33456		0.5329

valuation						
		Entropy 👃	Misclassification			Generalized
Method	N	RSquare	Rate	AUC	RASE	RSquare
Nominal Logistic	133	0.3886	0.1504	0.8950	0.33448	0.5329
Generalized Regression Lasso	133	0.3886	0.1504	0.8947	0.33456	0.5329
Bootstrap Forest	133	0.3373	0.1880	0.8748	0.35876	0.4759
Support Vector Machines	133	0.3280	0.1429	0.8695	0.35345	0.4652
Boosted Tree	133	0.3062	0.2180	0.8609	0.36878	0.4397
Decision Tree	133	0.1967	0.2331	0.7974	0.39828	0.3006
XGBoost	133	-0.002	0.2556	0.8227	0.41615	-0.003
Naive Bayes	133	-0.183	0.2406	0.8620	0.42568	-0.352

Select Dominant Run Selected Save Script Selected

Sum Freq and Sum Weight are suppressed when they are the same as N.

Run logistic regression

Source	LogWorth	PValue
BMI	3.892	0.00013
BP	3.182	0.00066
LTG	2.385	0.00413
Gender	1.102	0.07903
Total Cholesterol	0.971	0.10680
LDL	0.852	0.14066
HDL	0.353	0.44366
TCH	0.220	0.60189
Age	0.210	0.61634
Glucose	0.089	0.81415
Remove Add Ed	it 🗌 FDR	

Run SVM

 Predicted rate for low risk group: 50%

• You can flip a coin!

Set Probability Threshold

Predicted

Rate

Low High

0.969 0.031

0.446 0.554

Predicted

Count

Low

219

37

High

46

⊿ Training

Actual

Y Binary

Actual

Y Binary

Low High

Low

High

Misclassification

Rate

0.1424

⊿ Validation

Actual

Y Binary

Actual

Y Binary

Low

High

Low

High

Predicted

Rate

Low High

0.916 0.084

0.500 0.500 Predicted

Count

Low

87

19

High

8

19

Misclassification

Rate

0.2030

Classification problem

• IBM SPSS Modeler: Auto classifier.

• Again, include logistic regression as a baseline.

\sim		

0

🛞 YBinary

Fields Model Expert Discard Settings Annotations

Select models:		All models	All models						
Use?	Model type		Model parameters	No of models					
✓	C5 C5		Default	1					
~	Logistic	c regression	Default	1					
×	🗿 Decisio	on List	Default	1					
	- Bayesia	an Network	Default	1					
	Discrim	ninant	Default	1					
	KNN AI	gorithm	Default	1					
	LSVM		Default	1					
	📫 Randon	n Trees	Default	1					
	• SVM		Default	1					
	👫 Tree-AS		Default	1					
	XGBoos	t Linear	Default	1					
✓	KGBoos	st Tree	Default	1					
✓	CHAID CHAID		Default	1					
✓	QUEST Quest		Default	1					
✓		ee	Default	1					
~	• Randon	n Forest	Default	1					
	Neural	Net	Default	1					
Restrict maximum time spen	t building a single model	to		15 minute:					
Stopping rules		Misclass	ification costs						
OK R <u>u</u> n	Cancel			<u>Apply</u> <u>R</u> eset					

Classification problem

- The best model is random forest.
- Logistic regression is near the bottom!
- It is different from the result of SAS/JMP!

OK

Cancel

•	YBinary								
		違 <u>F</u> ile	🏷 <u>G</u> enera	ite 💰 <u>V</u> io	ew Preview	2		0 🗆	
-	Model	Graph	Summary	Settings	Annotations				
	Sort by:	Use	~	Ascendi	ing O Descending	Delete U	Inused Models View:	Training set 👻	
	Use?		Graph		Model	Build Time (mins)	Overall Accuracy (%)	No. Fields Used	
	~				Random Forest 1	< 1	99.774		10
	~				XGBoost Tree 1	<1	98.19		10
	~				C5 1	<1	89.593		9
	~				Logistic regress	< 1	83.937		10
	~	1			CHAID 1	< 1	82.805		5
							·	-	

Apply

<u>R</u>eset

Regression problem

• PISA 2018

 You can select multiple modeling methods, including traditional approaches (e.g. OLS regression & stepwise regression) and modern data science methods (e.g. decision tree, random forest, boosted tree, neural networks, XGBoost...etc.)

JMP Pro: Model screening

- The best two are neural boosted and gradient boosting.
- Suppose XGBoost should outperform gradient boosting, but it is at the bottom!
- Subset_PISA2018 Model Screening of Science JM... \times File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help 📴 🔁 💕 🛃 | X 🗈 🛍 🕄 🖯 🍦 ! 🖕 ! を 🖤 🖉 🔗 🔍 + 🍦 Model Screening for Science Table: Subset PISA2018 Response: Science Validation: Validation ⊿ Details Partition for Science Bootstrap Forest for Science Boosted Tree for Science Neural V XGBoost Response Science Stepwise Fit for Science ▷ Training ⊿ Validation RSquare ~ RASE Method N Neural Boosted 1284 0.1329 77.735 Boosted Tree 1555 0.1131 80.293 Bootstrap Forest 1555 0.1063 80.600 Generalized Regression Lasso 1284 0.0793 80.100 Fit Stepwise 1284 0.0792 80.104 Fit Least Squares 1284 80.113 0.0790 Decision Tree 1555 82.432 0.0652 XGBoost 1555 0.0115 84.768 Select Dominant Run Selected Save Script Selected and Sum Weight are suppressed when they are the same as N. Sum P ☆ 🖾 🔲 🔻

E<u>x</u>tensions SuperNode Window <u>Help</u>

C

Q

-8

Estimated number of models to be executed: 6

Expert Settings Annotations Fields Model

	Model t	/pe	Model parameters	No of models
×	2	Regression	Default	1
V	1	Generalized Linear	Default	1
	GLE	Generalized linear	Default	1
		KNN Algorithm	Default	1
	Ľ	Linear-AS	Default	1
	1	LSVM	Default	1
V	₽ [₽] ₽	Random Trees	Default	1
		SVM	Default	1
	ላሳ	Tree-AS	Default	1
		XGBoost Linear	Default	1
~	***	XGBoost Tree	Default	1
		Linear	Default	1
	CHAID	CHAID	Default	1
~	^ ^C _{RT}	C&R Tree	Default	1
	PAS	XGBoost-AS	Default	1
	•43	Random Forest	Default	1
		Neural Nat	Default	4

5 Ē ■

Tools

ᡥ

-0-> PISA2018.sav Туре Science

 \bigcirc

ecord Ops 🛛 🔵 Field Ops 🔺 Graphs 🛛 👚 Modeling Output Export Numeric Auto Cluster Time Series TCM Random Trees Tree-AS C&R Tree

> OK 🕨 R<u>u</u>n Cancel

 \times

SPSS Modeler

• Keep OLS regression as the baseline model.

SPSS Modeler

- XGBoost is the best!
- It is opposite to the result of SAS/JMP!

•	Science							×			
	📌 🔋 🖗	ile 👋 <u>G</u> enerate	<mark>∛ ⊻</mark> iew ▶ <u>P</u> rev	view							
Model Graph Summary Settings Annotations											
	Sort by: Use	View: Training	set 🛩								
I	Use?	Graph	Model	Build Time (mins)	Correlation	No. Fields Used	Relative Error				
	v	a an airte an	XGBoost Tre	< 1	0.664	9	0.648				
	~	and an a state of the	Random Tre	< 1	0.633	9	0.633				
	~) - saada bi saaray ka sadaa d	Neural Net 1	< 1	0.289	9	0.918				
	~	e andrese services a service	Regression 1	< 1	0.279	9	0.922				
	~	e andread an an an an an an	Generalized	<1	0.279	9	0.922				

Cancel

OK

Apply Reset

- Different software packages have different default tuning parameters and also their algorithms are slightly different.
- Automatic model comparisons using different software packages with different default parameters might lead to very different results.
- Many software packages offer both automated and interactive model comparison e.g.
 - IBM SPSS Modeler
 - JMP Pro
 - SAS Enterprise Miner
 - SAS Viya: Model Studio

JMP Pro: Model comparison

¢	PISA2006_USA_Canada - Model Comparison - JMP												×	
⊿▼	Model Compa	arison												
ÞP	redictors													
⊿∧	leasures of Fi	it for pro	oficiency											
			Entrop	y Gen	eralized	I			Mean	Misclassific	ation			
C	reator	.2 .4 .6 .	8 RSqua	re F	RSquare	Mean -	Log p	RMSE	Abs Dev		Rate	N		
Fi	t Ordinal Logistic		0.07	55	0.1322	. (0.6209	0.4642	0.4313	0.	.3407 138	329		
B	ootstrap Forest		0.13	45	0.2239	().5832	0.4448	0.4259	0.	.2807 162	236		
B	oosted Tree		0.06	27	0.1096	(0.6325	0.4699	0.4525	0.	.3468 166	502		
⊿А	UC Comparis	on												
Δ	AUC Compa	rison fo	r proficie	ncy=	1									
	Predictor		AUC S	td Error	Lowe	95% U	pper 9	5%						
	Prob[1]		0.6834	0.0046	i 0	.6743	0.69	924						
	Prob(proficienc	y== 1)	0.7801	0.0036	i 0	.7729	0.78	372						
	Prob(proficienc	y== 1)2	0.6743	0.0042	0	.6660	0.68	326						
						AUC								
	Predictor	v	s. Predicto	r	D	ifference	Std E	rror Lo	ower 95%	Upper 95%	ChiSquar	e Pr	ob>ChiSq	
	Prob[1]	P	rob(profici	ency==	1)	-0.097	0.0	0019	-0.100	-0.093	2708.	1	<.0001*	
	Prob[1]	P	rob(profici	ency==	1) 2	0.0091	0.0	0007	0.0076	0.0105	153.2	3	<.0001*	
	Prob(proficienc	y== 1)P	rob(profici	ency==	1) 2	0.1058	0.0	0019	0.1020	0.1095	3061.	7	<.0001*	
	Test	ChiSqua	re Di	Prob	>ChiSq									
	All AUCs equal	3067.0	02 2	<	.0001*									
													☆ 🐺 🛛	•

SAS Enterprise Guide

- Rapid Data Mining
- Totally automatic
- Just a few clicks

SAS Enterprise Miner

- Interactive model comparison
- Change parameters along the way.

SAS Viya: Model Studio

Challenges

- When the data set are massive or/and the analytical tasks are complicated, running multiple models in one job (model screening or model comparison) can take a long time.
- Solution: High performance computing (HPC)
- designed to utilize multi-threading.
- Complex analytical tasks are divided across processing nodes in a distributed system, and at the end the results are assembled into a single, final presentation.
- Drawback: if HP procedures are run on an environment that do not have HPC resources, it will take longer or cannot run at all!

Challenges

- If HPC resources are NOT available, do variable pre-screening!
- Is it necessary to collect so many data (e.g. 400-500 fields)?
- Is it necessary to include all 400-500 features (variables)?
 - Variable selection: drop the variables that are less important or unimportant e.g. stepwise regression (traditional, <u>not</u> <u>recommended</u>), generalized regression, and predictor screening (better)
 - Dimension reduction: Collapse variables into a few dimensions e.g. principal component analysis (PCA), partial least square.
- Use the remaining for model comparison.

After select the champion model...

Conclusion

- Do pre-screening to cut down the number of predictors.
- Using automated model comparison is OK, but should be used with caution.
- Include traditional modeling methods as the baseline (e.g. logistic regression, OLS regression, stepwise regression...etc.)
- Use more than one software packages. If they don't agree, turn to interactive model comparison.
- Use HP procedures if resources are available.
- After selecting the best model, retain predictors by looking for the inflection point.