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ABSTRACT  

This paper aims to illustrate proper applications of multi-dimensional item response theory (MIRT), which 
is available in SAS's PROC IRT. MIRT combines item response theory (IRT) modeling and factor analysis 
when the instrument carries two or more latent traits. While it may seem convenient to accomplish two 
tasks simultaneously by employing one procedure, users should be cautious of mis-interpretations. This 
illustration utilizes the 2012 Programme for International Student Assessment (PISA) data set collected 
by Organization for Economic Cooperation and Development. Because there are two known sub-domains 
in the PISA test (reading and math), PROC IRT was programmed to adopt a two-factor solution. 
Additionally, the loading plot, dual plot, item difficulty/discrimination plot, and test information function plot 
in JMP were utilized to examine the psychometric properties of the PISA test. When reading and math 
items were analyzed in SAS's MIRT, 7-13 latent factors are suggested. At first glance these results are 
puzzling because ideally all items should be loaded into two factors. However, when the psychometric 
attributes yielded from a 2–parameter IRT analysis are examined, it is evident that both the reading and 
math test items are well-written. It is concluded that even if factor indeterminacy is present, it is advisable 
to evaluate its psychometric soundness based on IRT because content validity can supersede construct 
validity.. 

INTRODUCTION  

Item response theory (IRT) is a psychometric tool that can amend shortcomings of the classical test 
theory (CTT). Specifically, in CTT, estimations of item difficulty and person trait are sample-dependent; in 
IRT, however, estimations of item parameters and person theta are more precise (Embretson & Reise, 
2000). IRT and its close cousin, Rasch modeling, assume uni-dimensionality (Yu, 2013). In other words, a 
test or a survey used with these approaches should examine only a single latent trait of the participants. 
In reality, many tests or surveys are multi-dimensional; to address this issue multi-dimensional IRT 
(MIRT) was introduced (Hartig & Hoher, 2009).  

To a certain extent, MIRT is a fusion of factor analysis and IRT. Although factor analysis and IRT share 
common ground in that some parameterizations of model parameters in factor analysis can be 
transformed into parameters in item response theory (Kamata & Bauer, 2008), the underlying philosophy 
of IRT is vastly different from that of factor analysis, which belongs to the realm of CTT. For example, the 
psychometric attributes of an instrument yielded from factor analysis attach to the entire scale. If one 
selects items from a validated scale, then the original psychometric properties will be damaged. In 
contrast, each item developed by IRT has its own characteristic (item difficulty parameter, discrimination 
parameter, guessing parameter, item information function, etc.). Hence, it is legitimate to generate an 
adaptive test by selecting items from an item bank. In addition, when responses are dichotomous (e.g. 
“right” or “wrong”) instead of ordinal (e.g. Likert scale ratings), conventional factor analysis utilizing 
Pearson’s correlation matrix is invalid. Nevertheless, throughout the last decade, numerous algorithms 
have been developed to make this fusion successful (Han & Paek, 2014). For example, in MIRT software 
packages the tetrachoric correlation matrix has replaced Pearson’s correlation matrix. At first glance it is 
efficient to accomplish two tasks concurrently (identify the factor structure and the item characteristics). 
However, it is important to point out that sometimes IRT and factor analysis results might not concur with 
each other. Specifically, it is common that while IRT yields excellent psychometric properties of the test 
items, factor analysis failed to yield a sound solution. 

METHODOLOGY 

This illustration utilizes the 2012 Programme for International Student Assessment (PISA) data set 
collected by Organization for Economic Cooperation and Development (OECD, 2013). Every four years 
OECD delivers assessments in three subject matters (reading, math, and science) to its members and 
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partner countries. In 2012, 51,000 students from 65 countries participated in PISA. In order to rule out 
cultural difference as an extraneous variable, in this analysis only USA students are selected (n = 4978). 
However, not all students answered all test items; rather, different booklets were assigned to different 
students and the missing values were imputed to obtain the plausible value for each student. To simplify 
the illustration, a subset of US students and a subset of items are selected so that imputation is not 
necessary. As a result, only 411 students are retained. 
 
The original PISA exam contained 13 booklets and 206 items across the three domains. One may argue 
that both math and science require similar reasoning approaches and thus the two factors are 
indistinguishable in the data is expected. To illustrate factor indeterminacy in this large-scale assessment, 
the authors retain reading and math items only. According to Gardner (2006), linguistic skill and math skill 
belong to different dimensions of intelligence.  
 
Because there are two known sub-domains in the test (reading and math), PROC IRT in SAS was forced 
to adopt a two-factor solution. The loading plot, dual plot, item difficulty/discrimination plot, and test 
information function plot in JMP were utilized to examine the psychometric properties of the PISA test. 
The dual plot is a graphic display that places item parameters and student ability (theta) on the same 
scale, whereas the Test Information Function (TIF) is the sum of all item information functions in the test. 

RESULT 

Figure 1 depicts the scree plot and variance explained. Based on this information, as well as on the 
eigenvalues of the polychoric matrix of math and reading items, it seems that there are 13 underlying 
factors in the PISA test. Figure 2 displays the loading plot of all item vectors in a 2-factor solution. 
Obviously, all vectors are jammed together and no clustering pattern can be detected. 

 

 
Figure 1. Scree plot from PROC IRT for PISA math and reading items. 
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Figure 2. Loading plot of PISA items. 
 
As mentioned before, one may argue that there might be two latent traits (reading and math skills) that 
contribute to the test performance of a math test. When math items are analyzed in SAS’s MIRT, seven 
latent factors are suggested (see Figure 3). 
 

 
Figure 3. Scree plot from PROC IRT for PISA math and reading items. 
  
At first glance these results are puzzling or even discouraging. However, when the dual plot (Figure 4) 
yielded from a 2–parameter IRT analysis is examined, it is evident that the math test items are well-
written. First, the item difficulty level is evenly distributed; there is no extremely difficult or super-easy 
item. The student ability distribution also forms a fairly normal curve. More importantly, when the item and 
student attributes compared, it is obvious that the test difficulty matches the student ability. If the best 
students can outsmart the test then there will be no corresponding items on the left side of the dual plot. 
Conversely, if the test is too challenging there will be no corresponding student on the right side of the 
plot. But this dual plot shows that every item has a matching student and every student has a matching 
item. 
 
The item difficulty/discrimination plot (Figure 5) provides additional support for the psychometric 
soundness of the test by showing that all items have positive discrimination parameters. Further, the test 
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information function plot (Figure 6) shows that much information about users whose ability estimates 
concentrate around the center (zero) can be learned from the exam. The peak of the TIF is above zero, 
indicating that more information about the students with slightly above-average ability estimates can be 
obtained. Math is considered a challenging subject and this psychometric information presents an 
important contribution to the field of mathematics education. 
 

 

 
Figure 4. Dual plot of PISA math items. Figure 5. Item difficulty/discrimination plot of 

PISA math items and USA student ability 
estimates. 

 
Similar findings are observed in the IRT modeling of PISA reading items. Figures 7 to 9 show that the 
reading items also have fine psychometric properties. Specifically, both the item difficulty level and the 
student ability are normally distributed. The items are well balanced in that students cannot outsmart the 
test, but the test is also not overly challenging. Further, all discrimination parameters are positive and the 
test information function concentrates around zero. The peak of the TIF is slightly below zero, meaning 
that more information about the students whose reading skill is mildly below average can be obtained. 
Given all these IRT psychometric attributes, it is absurd to deny the validity of the PISA exam just 
because there is no clear factor solution. Further, when math and reading tests are separately evaluated 
in two IRT models it returns a single ability estimate for each student. But if MIRT model is used, then it 
will yield individual ability profiles as test results rather than single scores (Hartig & Hoher, 2009). The 
question is: could we obtain more useful information by adding this extra layer of complexity? 
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Figure 6. Test Information Function Plot of PISA math items. 

 
 

 

 

Figure 7. Dual plot of PISA reading items. Figure 8. Item difficulty/discrimination plot of 
PISA reading items and USA student ability 
estimates. 
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Figure 9. Test Information Function Plot of PISA reading items. 

CONCLUSION 

In the past, CTT and IRT were believed to be incompatible. As such, merging these methodologies 
seemed to be a remote dream. Nevertheless, with the advance of MIRT the dream became a reality. 
Indeed, combining these methodologies can remediate limitations in both camps. While traditional IRT 
allows for measurement of a single construct, infusing factor modeling enhances IRT with 
multidimensionality. In CTT the psychometric property is tied to the entire instrument; consequently, when 
a researcher wants to customize a scale to a specific population, he or she needs to repeat the tedious 
process of EFA and CFA. IRT provides users with the flexibility of generating an ad hoc, on-the-fly test. 
Despite the versatility of MIRT, it is not uncommon that PROC IRT could not yield a sound IRT model and 
a factor model at the same time. When factor indeterminacy is present, it is advisable to evaluate its 
psychometric soundness based on IRT alone because content validity can supersede construct validity. 
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