Teaching math and science as a logical system

Chong Ho Yu, Ph.D. & Shuang Frances Wu, Ph.D. Azusa Pacific University, USA

Paper presented at Asian Conference on Education, Osaka, Japan (October 2014)

Objective

- Multiple indicators by international assessments show that cognitive capability of US students is behind to that of their Asian counterparts (e.g. PISA, TIMSS, Pearson's index of cognitive skills and educational attainment, Lynn's national IQ study...etc.)
- Shortcomings of rote learning, late boomer, poverty, and others arguments
- Why previous reforms didn't work (e.g. Back to basics, No child left behind, New Standards)?
- What can the US learn from Asia?
- Examples of teaching math and science as a mode of logical reasoning

	Maths			Science		Reading			
1	Shanghai, China	613	1	Shanghai, China	580	1 Shanghai, China 570			
2	Singapore	573	2	🖌 Hong Kong, China	555	2 🙀 Hong Kong, China 545			
3	🐅 Hong Kong, China	561	3	Singapore	551	3 Singapore 542			
4	Taiwan	560	4	Japan	547	4 • Japan 538			
5	South Korea	554	5	Finland	545	5 South Korea 536			
6	🔹 Macau, China	538	6	Estonia	541	6 Finland 524			
7	Japan	536	7	South Korea	538	7= 🎦 Taiwan 523			
8	Liechtenstein	535	8	★ Vietnam	528	7= Canada 523			
9	+ Switzerland	531	9	Poland	526	7= Ireland 523			
10	Netherlands	523	10=	Liechtenstein	525	10 Poland 518			
11	Estonia	521	10=	Canada	525	11= Liechtenstein 516			
12	Finland	519	12	Germany	524	11= Estonia 516			
13=	Canada	518	13	Paiwan Taiwan	523	13= Rustralia 512			
13=	Poland	518	14=	Netherlands	522	13= Mew Zealand 512			
15	Belgium	515	14=	lreland	522	15 Netherlands 511			
16	Germany	514	16=	🕘 Macau, China	521	16= 💽 Macau, China 509			
17	★ Vietnam	511	16=	🎌 Australia	521	16= 🛨 Switzerland 509			
18	Austria	506	18	🏁 New Zealand	516	16= Belgium 509			
19	🎨 Australia	504	19	 Switzerland 	515	19= Germany 508			
20=	lreland	501	20=	📥 Slovenia	514	19= \star Vietnam 508			
20=	📥 Slovenia	501	20=	🗮 United Kingdom	514	21 France 505			
22=	Denmark	500	22	Czech Republic	508	22 Norway 504			
22=	🏁 New Zealand	500	23	Austria	506	23 State United Kingdom 499			
24	Czech Republic	499	24	Belgium	505	24 United States 498			
25	France	495	25	Latvia	502	25 Denmark 496			
26	See United Kingdom	494	26	France	499	26 Czech Republic 493			
27	lceland	493	27	Denmark	498	27= Austria 490			
28	Latvia	491	28	United States	497	27= Italy 490			

Math [edit]

Fourth grade [edit]

TIMSS (1995)	TIM \$ \$2003	TIM \$ \$2007	TIMSS2011
1. Singapore 625 2. South Korea 611 3. Japan 597 4. Hong Kong 587 5. Netherlands 577 6. Czech 567 7. Austria 559 8. Slovenia 552 9. Ireland 550 10. Hungary 548	1. Singapore 594 2. Hong Kong 575 3. Japan 565 4. Taiwan 564 5. Flanders (Belgium) 551 6. Netherlands 540 7. Latvia 536 8. Lithuania 534 9. Russia 532 10. Wales) 531	1. A Hong Kong 607 2. Singapore 599 3. Taiwan 576 4. Japan 568 5. Kazakhstan 549 6. Russia 544 7. England (and Wales) 541 8. Latvia 537 9. Netherlands 535 10. Lithuania 530	1. Singapore 606 2. South Korea 605 3. Hong Kong 602 4. Taiwan 591 5. Japan 585 6. Northern Ireland 562 7. Flanders (Belgium) 549 8. Finland 545 9. England (and Wales) 542 10. Russia 542

- Rote learning vs. problem solving?: These Asian countries/regions had the highest percentages of students reaching the Advanced International Benchmark for science.
- At Grade 4, Singapore and Taiwan had 36 and 19 percent of their students, respectively, achieving at or above the benchmark.
- At Grade 8, Singapore and Taiwan had 32 and 25 percent of their students, respectively, meeting at or exceeding the benchmark.
- The medians: 7 percent at Grade 4 and 3 percent at Grade 8.

Pearson's study

Index of cognitive skills and educational attainment

In	dex ranking 2014	Index heat map		Index ranking 2014 v	2012	1	ow to u	se
	A to Z	Overall Index rank and score	•	Cognitive Skills rank and score	\$	Educational Attainment rank and score	\$	
:•:	SOUTH KOREA	[Rank 1]	1.30	[Rank 2]	1.35	[Rank 1]	1.19	
٠	JAPAN	[Rank 2]	1.03	[Rank 4]	1.20	[Rank 6]	0.70	
¢	SINGAPORE	[Rank 3]	0.99	[Rank 1]	1.65	[Rank 33]	0.33*	
\$	HONG KONG- CHINA	[Rank 4]	0.96	[Rank 3]	1.34	[Rank 18]	0.20*	
÷	FINLAND	[Rank 5]	0.92	[Rank 5]	0.99	[Rank 4]	0.79	
	UNITED KINGDOM	[Rank 6]	0.67	[Rank 8]	0.52	[Rank 2]	0.96	
٠	CANADA	[Rank 7]	0.60	[Rank 6]	0.77	[Rank 15]	0.25	
=	NETHERLANDS	[Rank 8]	0.58	[Rank 7]	0.57	[Rank 7]	0.58	
	IRELAND	[Rank 9]	0.51	[Rank 10]	0.49	[Rank 10]	0.55	
-	POLAND	[Rank 10]	0.50	[Rank 16]	0.33	[Rank 3]	0.85	
	DENMARK	[Rank 11]	0.46	[Rank 17]	0.32	[Rank 5]	0.75	
	GERMANY	[Rank 12]	0.41	[Rank 12]	0.48	[Rank 14]	0.28	
-	RUSSIA	[Rank 13]	0.40	[Rank 9]	0.50	[Rank 21]	0.19*	
	UNITED STATES	[Rank 14]	0.39	[Rank 11]	0.49	[Rank 20]	0.19	
**	AUSTRALIA	[Rank 15]	0.38	[Rank 13]	0.43	[Rank 13]	0.29	
×÷;	NEW ZEALAND	[Rank 16]	0.35	[Rank 21]	0.23	[Rank 8]	0.57*	-

From Intelligence and the Wealth and Poverty of Nations by Richard Lynn

Rank	Country	IQ estimate
1	Hong Kong	107
2	South Korea	106
3 ^	• <u>Japan</u>	105
4	Taiwan	104
5	Singapore	103
6*	Austria	102
6 ^	Germany	102
6 **	Italy	102
6*	Netherlands	102
10	Sweden	101
10	+ Switzerland	101
12	Belgium	100
12 **	* China	100
12	New Zealand	100
12 **	State <u>United</u> Kingdom	100
16	Hungary	99
16	Poland	99
16 **	Spain	99
19	🎫 <u>Australia</u>	98
19	Denmark	98
19*	France	98
19	Mongolia	98
19	Norway	98
19 *	United States	98

Richard Lynn's study

Late boomers? OECD on adults

OECD on US adults

- Thirty-six million American adults have low skills.
- In numeric and technological proficiency, young Americans ages 16 to 24 rank last.
- Learner's proficiency peak at age 30 and then going down.
- Start out with bad education and low skills
 → persist throughout their entire lives.

USSR is gone!

• Ravitch said, "The Soviet Union launched its Sputnik satellite in 1957. We did not respond by raising our test scores on international assessments... something is wrong with those international assessments, if our allegedly terrible public schools continue to produce the greatest workers, thinkers, leaders, and innovators that created the greatest economy in the world. The Soviet Union is gone, but we are still here!"

Poverty argument

- Martin Caroy and Richard Rothstein (2013): Disadvantaged students are oversampled in the US.
- David Berliner: If we remove the US students from the lowest SES, the US students are the best in PISA.
- What if we do the same in other samples?

TABLE 2A							
	Share of PISA 2	009 sample in	each social c	lass group, by	country		
Social class group	Canada	Finland	Korea	France	Germany	U.K.	U.S.
Group 1 (Lowest)	9%	6%	5%	15%	12%	14%	20%
Group 2	13	11	9	17	13	16	18
Group 3	31	34	31	31	29	29	28
Group 4	21	23	23	18	19	18	16
Group 5	17	20	22	13	16	15	12
Group 6 (Highest)	9	6	9	7	10	8	6

Source: Authors' analysis of OECD Program for International Student Assessment (PISA) 2009 database for each country

Overall average scale scores, mathematics, for U.S. and six comparison countries, PISA 2009 (with standardization for average social class distribution in top-scoring countries)

	TOP SCORING			S	SIMILAR POST-INDUSTRIAL			U.S.	U.S. VERSUS:		
	Canada	Finland	Korea	Average*	France	Germany	U.K.	Average*		Top-scoring average	Similar post-industrial average
National average math score (from Table 1)	527	541	546	538	497	513	492	501	487	-50	-13
National average math score, standardized for top-scoring country average social class distribution	531	541	543	538	513	522	504	513	504	-34	-9
Difference between social class standardized math scores and actual average reading scores	4	0	-3	0	17	10	11	13	17		

* Simple (unweighted) average of three countries

Current reform

- NATIONAL ACADEMY OF SCIENCES
- NATIONAL ACADEMY OF ENGINEERING
- INSTITUTE OF MEDICINE
- NATIONAL RESEARCH COUNCIL

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas

ISBN 978-0-309-21742-2

320 pages 8 1/4 x 10 PAPERBACK (2012) Committee on Conceptual Framework for the New K-12 Science Education Standards; National Research Council

Goals of the new framework

- by the end of 12th grade, all students have some appreciation of the beauty and wonder of science
- possess sufficient knowledge of science and engineering to engage in public discussions on related issues
- are careful consumers of scientific and technological information related to their everyday lives
- are able to continue to learn about science outside school; and have the skills to enter careers of their choice, including (but not limited to) careers in science, engineering, and technology.

Numerous previous proposals and reforms

- 1980s: Back to the basic
- American Association for the Advancement of Science (AAAS) (1993): Science for All Americans and Benchmarks for Science Literacy
- NRC (1996): National Science Education Standards
- No Child Left behind (2002)
- AAAS: Project 2061
- National Science Teachers Association (2009): Anchors project
- But does it help to write more reports?

Shing-Tung Yau 邱成桐

- Chinese (Hong Kong) American Mathematician
- Versed in Chinese literature and history
- To be proficient in math and science, the learner must learn humanity
- Humanity gives us passion
- A scientist needs passion

Passion

- To build passion the learner need to see the value.
- You won't love a person or a subject matter if you don't see it valuable.
- We can look outside math and science (literature, humanity) to build passion.
- But how about within math and science?

Interviews in Asia

• By interviewing students, teachers, parents, and professors in several top-performing countries/ regions in TIMSS and PISA in June and July 2014, the authors found that learners in these countries/regions, contrary to the popular belief, were not motivated by career prospects.

	High school students/graduates	Parents	High school teachers	Professors
Taiwan	5	5	21	2
Hong Kong & Macau	7	4	2	3

US has the incentives

- The US has the world's largest high tech economy that provides financial incentives for learning and science.
- The US also has the world's strongest basic (theoretical) research infrastructure supported by NSF that provides the environment for studying subatomic particles, cosmology...etc.

However...

- In 2003, of the 21.6 million scientists and engineers in the US, 16% (3,352,000) were immigrants (Kannankutty & Burrelli, 2007).
- In the same year, foreign-born doctorate holders represented approximately 50% of the workforce in engineering and computer science, and 37% and 43% of the workers in the physical sciences and mathematics, respectively (National Science Board, 2010).

Graduate degrees

 National Science Foundation reported that in 2006 foreign students earned about 36.2% of the doctoral degrees in the sciences and about 63.6% of the doctoral degrees in engineering. At the postdoctoral level, 56% in engineering are foreign doctorate holders, 50% in mathematics, and 42% in physical sciences (Salzman & Lowell, 2008).

National Foundation for American Policy: 2010 figures

Full-time Graduate Students and the Percent of International Students by Field (2010)

Field	Percent of International Students	Number of Full-time Graduate Students – International Students	Number of Full-time Graduate Students – U.S. Students
Electrical Engineering	70.3%	21,073	8,904
Computer Science	63.2%	20,710	12,072
Industrial Engineering	60.4%	5,057	3,314
Economics	55.4%	7,587	6,117
Chemical Engineering	53.4%	4,012	3,504
Materials Engineering	52.1%	2,660	2,891
Mechanical Engineering	50.2%	8,352	8,273
Mathematics & Statistics	44.5%	7,840	9,766
Physics	43.7%	5,716	7,369
Civil Engineering	43.7%	6,202	7,989
Other Engineering	42.1%	7,279	9,992
Chemistry	40.3%	8,059	11,952

Source: National Science Foundation, Survey of Graduate Students and Postdoctorate, webcaspar.nsf.gov. U.S. students include lawful permanent residents.

Nobel prizes

- Between 1950 and 2005, 27 of the 87 American Nobel Prize winners were born outside the US (Vilcek & Cronstein, 2006).
- Counting from 1990, about half of the US Nobel laureates in the scientific and technical disciplines were foreign-born.

Incentives are much weaker...

- Both Hong Kong and Macau are service-oriented economies, and therefore finding a job directly related to math and science is difficult.
- HK economic composition by sector (2008):
 - Manufacturing: 2.3%
 - Finance: 25%
 - Services: 34.7%
 - Others: 11.6%

Incentives are much weaker...

- Although Taiwan has a flourishing high tech industry, engineer is by no means a high-paying job.
- The infrastructure of basic research in Taiwan is significantly weaker than that in the US and Europe
- There is no basic research at all in Hong Kong and Macau.

In spite of, not because of

- In spite of the absence of a direct career path to the fields related to math and science, these societies treasure the intrinsic values of math and science.
- Many stakeholders express that learning math and science could enhance one's logical reasoning, and this mode of reasoning can be well-applied to all other domains.

What is behind science?

- Based on this finding the research team suggests that the value/logical system of math and science should be taught side by side with the factual contents.
- A new pedagogy is under development with the aim of guiding the learners to embrace the logics behind math and science as an allencompassing tool in life.

Example 1: Logarithm transformation

- Many US high school students cannot see the purpose of learning abstract math that seems to be very remote from reality.
- After the exam, they hit a "delete" button.

Logarithm	Exponent Form	Number	
0	10 ⁰	1	$(\log_{10} 0 = 1)$
0.08720	$10^{0.08720}$	1.222	$(\log_{10} 1.222 = 0.087)$
0.39076	$10^{0.39076}$	2.459	$(\log_{10} 2.459 = 0.39076)$
0.69644	$10^{0.69644}$	4.971	$(\log_{10} 4.971 = 0.69644)$
1	10 ¹	10	$(\log_{10} 10 = 1)$

Logic behind transformation

- Scaling is human-made. This is not an inherent property of an object.
- The logic of log transformation is: transformation → rescaling → emergence of hidden patterns.
- This logic can be well applied to many other forms of problem-solving.
- You can unveil the hidden patterns of this world (passion)!

Hidden pattern

- The distributions of publication of scientific studies and patents are skewed. A few countries (e.g. US, Japan) have the most.
- Log transformation can normalize them.

Before and after transformation

• It makes more senses!

Other transformations

• The logic of transformation can be wellapplied to other scenarios.

Example 2: Matrix algebra and vector geometry

• "Why do we learn these?"

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Logic behind...

- When we conceptualize data as matrices and translate algebraic equations into vector graphs, we can find out relationships between objects and phenomena.
- This logic can be wellapplied to many scenarios.

Distance Vector Protocol

- The Distance Vector Protocol is used for a network router to determine which path is the best way to transmit data.
- The router must know two things: Distance (how far is the destination from the source?) and Vector (To what direction should the data travel?)

Computer graphics

- In vector-based graphics, the image is defined by the relationships among vectors instead of the composition of pixels.
- For example, to construct a shape, the software stores the information like
 "Start from point A, draw a straight
 line at 45 degrees, stop at 10 units,
 draw another line at 35 degrees..." In
 short, the scalars and vectors of
 vector-based graphics define the
 characteristics of an image.
- More efficient and sharper image!

Expanding the logical reasoning

- Transformation and rescaling: don't accept anything as the default, transformation (changing representation) can unveil hidden patterns of the problem under study.
- Translate data into matrices, convert matrices into vectors: examine relationships to see the "big picture" instead of looking at the detail.

Question?

- Contact info
 - Chong Ho Yu: cyu@apu.edu
 - Shuang Frances Wu: swu@apu.edu
- Acknowledgment
 - Special thanks to numerous friends in Taiwan, Hong Kong, and Macau for helping me in data collection.