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Abstract 
This paper is an overview of how built-in and customized 
SAS codes can remediate the problem of collinearity in 
regression. Collinearity may be caused by (i) too many 
redundant variables, (ii) the presence of latent variables, 
(iii) the presence of high-order interaction terms, and (vi) 
the dependence of variables in a polynomial model. This 
paper discusses how reducing variables, centering scores, 
partial orthogonalization, and full orthogonalization 
should be used in different situations. 

 
Objectives 

This paper is an overview of how built-in and 
customized SAS codes can remediate the problem of 
collinearity in regression and to clarify some common 
misconceptions. 

The problem of multi-collinearity is often caused by 
including too many regressors in a regression model. It is 
a common misconception that stepwise regression enables 
a researcher to select a subset of variables based upon 
their relative "importance." Indeed if variables are 
correlated, the "importance" of the variables are tied to 
the selection order. Other variable selection criteria such 
as maximum R-square and Mallow's Cp are 
recommended instead. Further, if correlated variables 
indicate latent variables, partial least square procedure is 
recommended. 

Another confusion is the distinction between 
mathematical dependence and logical dependence. In a 
regression model involving interaction terms, the 
interaction variable is highly related to other independent 
variables. However, the problem of multi-collinearity 
does not invalidate the regression model. It is because the 
interaction is only mathematically dependent but not 
logically dependent on other predictors. A partial 
orthogonization method or a centered-score regression 
can be used while an interaction term is present. 

A polynomial regression presents a similar confusion. 
In a polynomial regression the quadratic term, the cubic 
term, or the quartic term is certainly correlated to the 
original variable, how can the problem of collinearity be 
overcome? In this case, a full orthogonized regression 
model is recommended. 

 
Collinearity 

The absence of multi-collinearity is essential to a 
multiple regression model. In regression when several 
predictors (regressors) are highly correlated, this problem 
is called multi-collinearity or collinearity. Collinearity 
means codependence. When variables are related, they are 
linearly dependent on each other because one can nicely 
fit a straight regression line to pass through many data 
points of those variables. 

Collinearity is problematic when one's purpose is 
explanation rather than mere prediction. Collinearity 
makes it more difficult to achieve significance of the 
collinear parameters. But if such estimates are statistically 
significant, they are as reliable as any other variables in a 
model. And even if they are not significant, the sum of the 
coefficient is likely to be reliable. Thus, increasing the 
sample size is a viable remedy for collinearity when 
prediction instead of explanation is the goal (Leahy, 
2000). However, if the goal is explanation, other 
measures other than increasing the sample size are 
needed.  

 
VIF as collinearity diagnostics 

Understanding multi-collinearity should go hand in 
hand with understanding variation inflation. Variation 
inflation is the consequence of multi-collinearity. In a 
regression model we expect a high variance explained (R-
square). The higher the variance explained is, the better 
the model is. However, if collinearity exists, probably the 
variance, standard error, parameter estimates are all 
inflated. In other words, the high variance is not a result 
of good independent predictors, but a mis -specified model 
that carries mutually dependent and thus redundant 
predictors! Variance inflation factor (VIF) is a common 
way for detecting multicollinearity. In SAS you can 
obtain VIF in the following ways:  
 

PROC REG; MODEL Y = X1 X2 X3 X4 /VIF 
 

The VIF option in the regression procedure can be 
interpreted in the following ways:  
 
1.  Mathematically speaking: VIF = 1/(1-R-square)  
2. Procedurally speaking: The SAS system put each 
independent variable as the dependent variable e.g. 

X1 = X2 X3 X4 
X2 = X1 X3 X4 
X3 = X1 X2 X4 
Each model will return an R-square and VIF. We can 

decide which variable to throw out by examining the size 
of VIF. A general rule is that the VIF should not exceed 
10 (Belsley, Kuh, & Welsch, 1980). 
3. Graphically speaking: In a Venn Diagram, VIF is 
shown by many overlapping circles. In Figure 1, the circle 
at the center represent the outcome variable and all 
surrounding ones represents the independent variables. 
The superimposing area denotes the variance explained. 
When there are too many variables, it is likely that Y is 
almost entirely covered by many inter-related Xs. The 
variance explained is very high but this model is over-
specified and thus useless. This is a typical problem of too 
many variables. 
 



 
Figure 1. Venn Diagram of VIF 
 

 
 
 
The problem of too many variables 

Collinearity happens to many inexperienced 
researchers. A common mistake is to put too many 
regressors into the model. When there are too many 
variables in a regression model, the number of parameters 
to be estimated is larger than the number of observations. 
As a result, this model is said to be lack of degree of 
freedom and becomes over-fitting.  
Stepwise regression 

One common approach to select a subset of variables 
from a complex model is stepwise regression. A stepwise 
regression is a procedure to examine the impact of each 
variable to the model step by step. The variable that 
cannot contribute much to the variance explained would 
be thrown out. There are several versions of stepwise 
regression such as forward selection, backward 
elimination, and stepwise.  

 
Figure 2. Correlated predictors 
 

 
 

However, the above interpretation is valid if and only 
if all predictors are independent. Collinear regressors or 
regressors with some degree of correlation would return 
inaccurate results. Assume that there is a Y outcome 
variable and four regressors X1-X4. In Figure 2 X1-X4 are 
correlated (non-orthogonal). One cannot tell which 
variable contributes the most of the variance explained 
individually. If X1 enters the model first, it seems to 
contribute the largest amount of variance explained. Then 
X2 seems to be less influential because its contribution to 
the variance explained has been overlapped by the first 
variable, and X3 and X4 are even worse.   

Indeed, the more correlated the regressors are, the 
more their ranked "importance" depends on the selection 
order (Bring, 1996; Fox, 1991). Nevertheless, we can 
interpret the result of step regression as an indication of 
the importance of independent variables if all predictors 
are orthogonal. In Figure 3 there is a "clean" model, in 
which the individual contribution to the variance 
explained by each variable to the model is clearly seen. 
Thus, it can be asserted that X1 and X4 are more 
influential to the dependent variable than X2 and X3. 
 
Figure 3. Uncorrelated predictors 
 

 
 
Maximum R-square and Mallow's Cp 

Since the purpose of reducing the number of 
variables is to avoid collinearity, it is absurd to employ a 
method that is affected by collinearity or some degree of 
correlation. There are other better ways to perform 
variable selection such as Maximum R-square (MAXR) 
and Mallow's Cp. MAXR is a method of variable 
selection by examining the best of n-models based upon 
the largest variance explained. Mallow's CP is the total 
square errors which indicates the lack of fit, as opposed to 
the best fit by MAXR. Thus, the higher the R-square is, 
the better the model is. On the other hand, the lower the 
Cp is, the better the model is. To perform these variable 



selection methods in SAS, the syntax is PROC REG; 
MODEL Y=X1-Xn /SELECTION=MAXR CP 

For the clarity of illustration, only three regressors  
(X1,  X2,  X3) are used to illustrate MAXR and Cp. The 
principle illustrated here can be applied to the situation of 
many regressors. In Figure 4, the x-axis represents the 
number of variables while the y-axis depicts the value of 
R-square. In this hypothetical case, it clearly indicates a 
sharp jump from one variable to two variables. But the 
curve turns flat from two to three variables (see the 
arrow). 

 
Figure 4. Plot of number of variables and R-Square 
 

 
 

Interestingly enough, in terms of Cp, the full model is 
worse than the two-variable model. (see the arrow in 
Figure 5). Nevertheless, although the approaches of 
MAXR and Mallow's Cp are different, the conclusion is 
the same: One is too few and three are too many.  

 
Figure 5. Plot of number of variables and Cp 
 

 
 
Partial least squares regression 

There are other ways to reduce the number of 
variables such as factor analysis, principal component 
analysis and partial least squares. The philosophy behind 
these methods is very different from variable selection 

methods. In the former group of procedures "redundant" 
variables are not excluded. Rather they are retained and 
combined to form latent factors. It is believed that a 
construct should be an "open concept" that is triangulated 
by multiple indicators instead of a single measure 
(Salvucci, Walter, Conley, Fink, & Saba, 1997). In this 
sense, redundancy enhances reliability and yields a better 
model. 

However, factor analysis and principal component 
analysis do not have the distinction between dependent 
and independent variables and thus may not be applicable 
to research with the purpose of regression analysis. One 
way to reduce the number of variables in the context of 
regression is to employ the partial least squares (PLS) 
procedure. PLS is a method for constructing predictive 
models when the variables are too many and highly 
collinear (Tobias, 1999). Besides collinearity, PLS is also 
robust against other data structural problems such as skew 
distributions and omission of regressors (Cassel, 
Westlund, & Hackl, 1999). It is important to note that in 
PLS the emphasis is on prediction rather than explaining 
the underlying relationships between the variables. 

Like principal component analysis, the basic idea of 
PLS is to extract several latent factors and responses from 
a large number of observed variables. Therefore, the 
acronym PLS is also taken to mean Projection to Latent 
structure. The following is an example of the SAS code 
for PLS: PROC PLS; MODEL; y1-y5 = x1-x100; Note 
that unlike an ordinary least squares regression, PLS can 
accept multiple dependent variables.  

 
The problem of interaction effect 
Mathematical dependence and logical 
dependence 

Even if a model is as simple as employing four 
independent variables, collinearity may still happen when 
a composite score is included in the model. The following 
is a typical example: 
 

GPA = GRE-verbal + GRE-quantitative + GRE-
analytical + GRE-total  

 
In the above example, GRE-total is only the sum of 

all other predictors. Needless to say, GRE-total is strongly 
associated with those variables. Technically speaking, 
they are both mathematically and logically dependent. In 
terms of mathematics, the number of GRE-total is based 
upon the numbers of all others. In the logical sense, GRE-
total is not a new concept. 

However, the following model is legitimate though 
strong relationships exist among predictors:  
 

GPA = time spent with family + time spent in church 
+ (time spent with family * time spent in church)  

 
The researcher created the last variable because he 

suspected that GPA is a function of the interplay between 
family values and Christian work ethics. Nevertheless, in 
this case they are mathematically dependent but logically 



independent. Mathematically speaking, the interaction 
effect is the product of the first two variables and they 
certainly have strong numeric relationships. Conceptually 
speaking, the interaction is considered a new variable and 
thus it is logically independent from others. In other 
words, an interaction term does not invalidate a regression 
model even though the interaction effect is collinear with 
the two original variables. 

 
Orthogonalization 

In spite of its logical independence, we still have to 
"orthogonalize" the variables to make them 
mathematically independent. Orthogonality is a state in 
which the angle between two vectors is 90 degrees. 
According to Hacking (1992), orthogonality is not only a 
pure mathematical concept, but also a cultural concept 
that carries value judgment: 

Normal and orthogonal are synonyms in geometry; 
normal and ortho- go together as Latin to Greek. 
Norm/ortho has thereby a great power. On the one 
hand the words are descriptive. A line may be 
orthogonal or normal (at right angles to the tangent 
of a circle, say) or not. That is a description of the 
line. But the evaluative 'right' lurks in the 
background of right angles. It is just a fact that an 
angle is a right angle, but it is also a 'right' angle, a 
good one. Orthodonists straighten the teeth of 
children; they make the crooked straight. But they 
also put the teeth right, make them better. 
Orthopaedic surgeons straighten bones. 
Orthopsychiatry is the study of mental disorders 
chiefly in children. It aims at making the child-
normal. The orthodox conform to certain standards, 
which used to be a good thing (p.163). 
Therefore, in the context of regression, 

orthogonalization can make a "good" regression model. In 
subject space (vector space), "orthogonalization" can be 
viewed as a process of subtracting the vector from its 
projection (Savile & Wood, 1991; Wickens, 1995). In 
variable space, "orthogonalization" can be explained as a 
process of finding the residual of the interaction term.  

Figure 6 illustrates how a new vector, W, is made by 
X – Y in vector space. To subtract Y from X, a parallel 
line of Y is drawn at the end of X. Then a new vector is 
formed by joining the origin of X, Y and the other end of 
Y's parallel. In other words, subtraction creates a new 
vector pointing to a different direction, which is 
significantly far away from the original vectors. Although 
X and Y are highly correlated, which is indicated by the 
small angle between the two vectors, W is uncorrelated to 
either X or Y. That's why vector subtraction can help to 
do away with collinearity. 

 
 
 
 
 
 
 

Figure 6.  Subtraction in vector space 
 

 
Figure 7 explains orthogonalization by projection. 

Please keep in mind that this illustration is simplified. In 
Figure 7, X1 and X2 are not strongly related, which is 
depicted by the wide angel between the two vectors. 
However, the product of X1,  X2 is strongly associated 
with either X1 or X2, which is indicated by the proximity 
between X1 and X1X2, and between X2 and X1X2, 
respectively. 

 
Figure 7. Product vector 
 

 
 

To solve this collinearity problem, the first step is to 
draw a projection of X1X2 vector. A projection in subject 
space is equivalent to the predicted (y-hat) in variable 
space. In Figure 8, X1X2 is the actual vector and Xp is the 
predicted vector.  

After locating the projection, the next step is to create 
a new vector (new variable), which is orthogonal (not 
closely related) to X1 and X2, but is conceptually 
equivalent to X1X2. By using the subtraction method 
mentioned above, we can create the new vector Xo. Xo 
can be viewed as a result of negotiating between what is 
(X1X2) and what ought to be (Xp). Before 
orthogonalization, there exist a threat of collinearity. 
After orthogonalization, Xo is far away from X1 and X2 
and thus collinearity is no longer a threat. 

 
 
 
 
 
 
 
 



Figure 8. Projection of residual 
 

 
 

The SAS code for orthogonalizing the interaction 
term is as the following. This is a partial 
orthogonalization method suggested by Burrill (1997):  

 
X1X2 = X1*X2 
/* output the residuals of the interaction term*/ 
PROC REG DATA=DATA1; 

MODEL X1X2 = X1 X2; 
 OUTPUT OUT=DATA2 R=R_X1X2; 

/* use the residual as an orthogonalized variable */ 
PROC REG DATA=DATA2; 

MODEL Y = X1 X2 R_X1X2; 
 
Deviation scores 

Using centered scores, also known as deviation 
scores, is another way to avoid collinearity in regression 
that involves interaction. A centered score is simply the 
result of subtracting the mean from the raw score (X - 
X_mean). For the ease of illustration, the following 
example will use only two subjects and two variables: 

If the raw scores of two subjects are plotted into 
subject space, there are two short vectors and a very long 
vector. Two problems are resulted from using the raw 
scores. First, the scales of X1, X2 and X1 * X2 are very 
different. Second, there exists collinearity, of course. 

 
Figure 8. Interaction term in vector space 
 

 
To overcome these problems, one can apply centered 

scores into the regression model. When one plots the 

centered scores into subject space, one can find that the 
scales of all vectors are closer to each other. Further, the 
interaction term is orthogonal to both centered X1 and 
centered X2. Hence, collinearity is no longer a threat. 

 
Figure 9. Vectors with centered scores 
 

 
 

The SAS code to run a regression with centered 
scores is as the following: 
 
DATA ONE; SET DATA; 

INPUT Y X1 X2;  
 PROC MEANS; VAR X1 X2;                                            
 OUTPUT OUT=NEW MEAN=MEAN1-MEAN2;                       
DATA CENTER; IF _N_ = 1 THEN SET NEW; SET ONE;                                                                   
 C_X1 = X1 - MEAN1;                                             
 C_X2 = X2 - MEAN2;                                           
 C_X1X2 = C_X1 * C_X2;                                          
 PROC GLM; MODEL Y = C_X1 C_X2 C_X1X2;  
 

The preceding code works fine with a small dataset 
(e.g. a few hundred observations). However, The 
following revised code is more efficient for a large dataset 
(e.g. thousands of observations): 
 
DATA ONE; SET DATA; 
 INPUT Y X1 X2; 
 PROC MEANS; VAR X1 X2;                                            

OUTPUT OUT=NEW MEAN=MEAN1-MEAN2;                       
DATA CENTER/VIEW=CENTER;  
 IF _N_ = 1 THEN SET NEW(KEEP = MEAN1-
MEAN2); SET ONE;                                                                    
 C_X1 = X1 - MEAN1;                                             
 C_X2 = X2 - MEAN2;                                           
 C_X1X2 = C_X1 * C_X2;                                          
 PROC GLM DATA=CENTER; MODEL Y = C_X1 
C_X2 C_X1X2;  
 

First, using a view instead of creating a new dataset 
can save memory space. A view works like a dataset 
except that it creates the dataset only and only if the data 
are read. Second, because only the means will be used 
later, other unused variables can be dropped and only the 
means are kept. Again, it can save memory space to make 
the program more efficient. 
 



Polynomial regression 
Not all regression models are linear. In some 

situations the relationship among variables may be non-
linear. A classical example is stress-performance 
relationship. Initially pressure could lead to better 
efficiency. But if the stress is too intense, performance 
will decrease due to physical or mental break down.   

Another classical example is the relationship between 
performance and ability. Contrary to popular belief, 
increasing ability in a discipline or a specific task does not 
lead to a linear increase in performance. Many teachers 
are frustrated with the phenomenon that many low 
achievers do not show improvement in test scores despite 
tremendous efforts contributed by both teachers and 
students. It is because low-ability learners do not have the 
required skills to perform even the basic function. Once 
they master the basic skills, their performance gain would 
be proportional to their ability gain. The curve hits an 
inflection point and turns virtually flat again when the 
skills are mastered. For example, the score difference in a 
writing test between a master and a Ph.D. may be 
minimal. The technical term for this S-shaped curve is 
ogive (see Figure 10).  

 
Figure 10. Ogive in a polynomial model 
 

 
 
 

In curvilinear cases, polynomial regressions, which 
involve quadratic, cubic, or quartic terms, should be 
implemented. Are the quadratic, cubic, quartic and the 
original variables highly correlated? Yes, it is because the 
first three are derived from raising power of the original 
variable. To avoid the problem of multi-collinearity, again 
you should "orthogonalize" the vectors. In this case a full 
orthogonalization approach should be used. Gram-
Schmidt method is one of the widely used full 
orthogonalization method but it is difficult to understand 
and implement. 

Another way to orthogonalize the vectors in the 
regression is to employ PROC ORTHOREG in SAS. This 
procedure is specifically developed for ill-conditioned 
data and polynomial model. The orthogonalization 
method here is Gentleman-Givens transformations. The 
following example is a labor statistics dataset in the SAS 

manual. Price level, GNP, unemployment rate, size of 
armed forces, population, and year are used to predict 
employment rate. Since the raw variables are strongly 
correlated and it is believed that the regression model is 
quadratic, PROC ORTHOREG instead of PROC REG or 
PROC GLM is used in the estimation. 
 
proc orthoreg;  model Employment =  
  Prices   Prices*Prices 
  GNP      GNP*GNP 
  Jobless  Jobless*Jobless 
  Military Military*Military 
  PopSize  PopSize*PopSize 
  Year     Year*Year; 
 
Conclusion 

There is no single solution to the problem of 
collinearity. The rationale of using variable selection, 
latent construct, centered scores, partial orthogonalization, 
and full orthogonalization must be carefully examined 
while the researcher encounters various datasets. 
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