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What is data mining?  

The objective of this article is to evaluate the bold claim that automated search in 
the form of data mining can supersede conventional hypothesis testing as a new 
paradigm. Data mining is a cluster of techniques, including classification trees, 
neural networks, and K-mean clustering, which has been employed in the field 
Business Intelligence (BI) for years. According to Larose (2005), data mining is the 
process of automatically extracting useful information and relationships from 
immense quantities of data. Data mining does not start from a strong pre-
conception, a specific question, or a narrow hypothesis, rather it aims to detect 
patterns that are already present in the data and these patterns should be 
considered relevant to the data miner. Of a similar vein, Luan (2002) views data 
mining as an extension of Exploratory Data Analysis (EDA). In short, data mining 
possesses the following characteristics: (a) the utilization of automated algorithms, 
(b) the utilization of large quantities of data, and (c) an emphasis of exploration 
and pattern recognition instead of confirming or disconfirming a pre-defined 
hypothesis or model.  

However, it is impossible for a researcher to completely do away with any pre-
conception. At most we can attempt to keep an open mind to other possibilities 
that may remotely resemble to our existing conception. Take Search for 
Extraterrestrial Intelligence (SETI) as an example. On one hand scientists should 
not impose a strict definition of what an intelligent life form is on other planets 
based upon our own image. But on the other hand they must at least have some 
loose conceptions of what the signal from an intelligent civilization might sound 
like. How much pre-conception is considered acceptable remains an issue in data 
mining.  

Data mining vs. testing single hypothesis  

Inspired by data mining, Glymour (2004) asserted that we are in the midst of a 
revolution premised on the automation of scientific discovery made possible by 
modern computers and new methods of acquiring data. He gave many examples 
and almost all of them share a common theme: automated data mining either 
confirms or disconfirms previously inconclusive findings. For example, in the 1990s 
a team of Dutch scientists re-analyzed a data set collected in 1970s and 
“confirmed” that low-level lead exposure is more dangerous to children’s cognitive 
development than had previously been thought. Using similar techniques, climate 
researchers were able to trace the global increase in vegetation and its 
consequences over the last twenty years. Another success story is regarding the 
use of TETRAD, a causal discovery algorithm invented by Glymour and his 



colleagues, that leads to correct classification of mineral composition of rocks in 
order to aid NASA in planetary missions (Moody, Silva, Vanderwaart, Ramsey, & 
Glymour, 2002). In addition, in a study regarding the causal factors of college 
student retention, Druzdzel and Glymour (1994) claimed that “one apparently 
robust finding of our study is that student retention is directly related to the 
average standardized test scores of the incoming freshmen” (p.1, Italics added by 
me). Druzdzel and Glymour stated that other environmental variables, such as 
student faculty ratio, faculty salary, and university’s educational expenses per 
student, are independent of graduation rates.  

Glymour argued that the existing scientific paradigm allows just one or very few 
hypotheses to be entertained and tested by few experiments. Alternatively, the 
emerging paradigm enables researchers to use computational methods to examine 
vast numbers of hypotheses and to identify those few that have a reasonable 
chance of being true. In this fashion, oversights of human judgment can be 
corrected by computer. This automation of scientific inquiry is chiefly driven by 
novel abilities to acquire, store, and access previously inconceivable amounts of 
data, far too much for humans to survey by hand and eye. Put bluntly, Glymour 
(2004) asserts that there exists a war of paradigms:  

Kuhn said that scientific revolutions generally meet fierce resistance-
and the automation of discovery in science is no exception. In some 
cases the animosity stems from nothing more than conservatism, an 
effort to preserve academic turf, or simple snobbery. Above all, 
automated science competes with a grand craft tradition that 
assumes that science progresses only by scientists advancing a single 
hypothesis, or a small set of alternative hypotheses, and then 
devising a variety of experiments to test it. This tradition, most 
famously articulated by Sir Karl Popper, is championed by many 
historians and philosophers of science, and resonates with the 
accounts of science that many senior scientists learned in graduate 
school. The “Popperian” method of trial and error dominated science 
from the sixteenth through the twentieth century not because the 
method was ideal, but because of human limitations, including 
limitations in our ability to compute (p.75-76).  

In addition, Glymour directs his focus to the aspect of automation in data mining 
instead of exploration. To him using the conventional approach for causal 
discovery is extremely inefficient. Glymour (2004) mocked hypothesis testing by 
using the following analogy: “So how does one find a needle in a haystack? Pick 
something out of the haystack. Subject it to a severe test, e.g., see if it has a hole 
in one end. If so, conjecture it’s a needle; otherwise, pick something else out of 
the haystack and try again. Continue until you find the needle or until civilization 
comes to an end” (p.76-77). With the advance of ultra-fast computers, in 
Glymour’s view, scientists should move away from the old paradigm to embrace 
automation, which would be equivalent to setting the haystack on fire and blowing 
away the ashes to expose the needle.  

The above statements are exaggerated. First, it is not historically accurate. It is 
doubtful that theory testing was predominantly conducted in the Popperian 
falsification fashion in the last few centuries (Saunders, 2000). It seems that 
Glymour’s remarks are about what philosophers of science have thought of 
scientific investigations, but in practice what he described may not be the actual 
case. However, this point is not related to the main theme here and discussion of 
Popper is far beyond the scope of this paper. Second, the old paradigm that 
Glymour severely criticized is the hypothetico-deductive approach, which is 
manifested in use of significance testing. However, whether this paradigm should 
be abandoned remains inconclusive. As defenders of the hypothetical-deductive 
approach in the form of significance testing have argued, this approach provides 
us with the criteria by which provisionally to distinguish results due to chance 
variations from results that represent systematic effects in data at hand (Harlow, 



Mulaik, & Steiger, 1997). Third, data mining has been widely employed in the field 
of Business Intelligence (BI) for years and has been gradually adopted by 
educational researchers (Serban & Luan, 2002). Fourth, in actuality, Exploratory 
Data Analysis and Confirmatory Data Analysis are accepted by many researchers 
as complementary rather than competing methodologies (Behrens, 1997; Behrens 
& Yu, 2003). Thus, the techniques of exploration and pattern recognition are not 
strangers to data analysts and scientists. If data mining is treated as an extension 
of EDA, widespread acceptance of automated inquiry and data mining is 
foreseeable. Fifth, by citing many examples of how new data mining techniques 
corrected previously flawed research or confirmed existing correct beliefs, it seems 
that Glymour is not trying to suggest the approximate location of the needle inside 
the haystack, but to pinpoint the exact parameter of the needle. This addresses 
two key issues: how can we know the target in the research must be a needle, and 
how can we guarantee that the needle is really inside the haystack? Scientists 
frequently deal with proxy measures or latent constructs, in which definitions are 
open to debate.  

If we are not sure what proxy measures are good indictors, what the constructs in 
a model mean or what variables should be loaded into a construct, how can we be 
so positive that the true causal structure can be unveiled by “blowing away” all 
other incorrect rival models? In actuality, automation is not the focal point of data 
mining. In the beginning data miners Berry and Linoff announced data mining as a 
tool using automatic or semi-automatic means for discovering patterns out of large 
quantities of data. Later they revised their view by saying, “If there is anything we 
regret, it is the phrase ‘by automatic or semi-automatic means’ … because we feel 
there has come to be too much focus on the automatic techniques and not enough 
on the exploration and analysis” (cited in Larose, 2005, p.4).  

Data mining and the problem of induction  

Nevertheless, the preceding arguments are not the main point of this article. 
Instead of indulging in the cat and mouse game of he-said she-said, I will 
approach this issue from an epistemological perspective. In brief, using large 
amount of data in automated data mining does not guarantee theory confirmation, 
because no matter how large the data set and how sophisticated the searching 
algorithm, the conclusion yielded by this process is still subject to the new problem 
of induction, which will be discussed later. To philosophers there is nothing new 
about the problems of induction; nonetheless, it is the objective of this article to 
raise the awareness of this issue among data miners. To facilitate the discussion, a 
first brief definition of induction will be provided. Next, the relationship between 
data mining and induction will be illustrated. Afterwards, the old and new problems 
of induction will be thoroughly examined.  

What is induction?  

In the 1600s the English philosopher Francis Bacon (1620) defined the use of 
inductive reasoning as drawing conclusions from an exhaustive body of facts. 
According to Bacon, one should proceed regularly and gradually from one thesis to 
another based on the generalization of empirical input and particular instances by 
collecting all relevant data without any presuppositions, so that the generalization 
is not reached till the last available instance is examined. In other words, each 
thesis is thoroughly tested by observation and experimentation before the next 
step is taken. In effect, each confirmed thesis becomes a building block for a 
higher level concept, with the most generalized thesis representing the last stage 
of the inquiry. In brief, induction is an inference from observed facts to 
generalizations.  

Goldman (2006) asserts that no scientist has ever been a strict Baconian. First, 
the scientist would go nowhere if Baconian induction is literally followed for no one 
could inductively exhaust all facts. Second, the so-called presupposition-less 



approach inevitably presupposes that reasoning about nature begins with 
uninterpreted “input” data that are simply given to the mind in experience. Third, 
it also presupposes the availability of objective relevance criteria. But if the mind is 
truly passive in reasoning, how do hypotheses arise? Long before Goldman, 
Carnap (1952) had argued that induction might lead to the generalization of 
empirical laws but not theoretical laws. For instance, even if we observe thousands 
of stones, trees and flowers, we never reach a point at which we observe a 
molecule if we do not engage in theorizing. After we heat many iron bars, we can 
infer the empirical generalizations that metals will bend when they are heated. But 
we will never discover the physics of expansion coefficients in this way.  

Indeed, superficial empirical–based induction could lead to wrong conclusions. For 
example, by repeated observations, it seems that heavy bodies (e.g. metal, stone) 
fall faster than lighter bodies (paper, feather). Without taking air resistance into 
account, ancient Greeks conjectured that heavy objects are more attracted to the 
ground than light objects. This Aristotelian belief had misled European scientists 
for over a thousand years for people did not go beyond superficial empirical–based 
induction to theoretical principles, but Galileo argued that indeed gravity produces 
equal acceleration to both heavy and light objects. There is a popular myth that 
Galileo conducted an experiment in the Tower of Pisa to prove his point. Probably 
he never performed this experiment. Actually this experiment was performed by 
one of Galileo’s critics and the result supported Aristotle’s notion. Galileo did not 
get the correct physical law from observation, but by a chain of logical arguments 
(Kuhn, 1985).  

Nonetheless, to counter the preceding weaknesses in classical induction, 
researchers today who employ inductive reasoning would not claim that they 
approach data without any pre-conception; rather, theorizing must be involved in 
scientific inquiry.  

Relationships between data mining and induction  

In the context of data mining, induction involves the logic of both generalization 
and statistical syllogism, but there is a subtle difference between inductive 
reasoning in data mining and that in a conventional sense. A typical inductive 
generalization proceeds from a premise about a sample to a conclusion concerning 
the population. For example,  

After examining sample S, it was found that S has attribute A.  

Henceforth, it is probable that population P has attribute A.  

On the other hand, a statistical syllogism reaches a conclusion in a reverse order: 
proceeding from the premise about a population to the conclusion of an individual 
or a sample. For example,  

Population P has attribute A.  

An individual I or a sample S is a member of P.  

Henceforth, there is a probability that I or S has A.  

Although data mining can be conceptualized as an integration of both preceding 
approaches, the reference class and the inference target in data mining, unlike 
those in conventional induction, are not called population and sample. Take a 
popular data mining method, induction-based classification tree, as an example. In 
a typical classification problem, a huge data set is partitioned into a training set 
and a testing set. The training set, TR, is used to learn about the classifying 
attributes. After the initial process is completed, the known attributes and the 



model would be used as a guideline to examine the remaining observations, 
namely, the testing set, TE (Srivastava, Han, Kumar, Vipin & Singh, 1999). 
However, unlike a classical inductive inference in which either a generalization is 
made from a sample to the population or vice versa, data mining attends to the 
data at hand. Thus, the form of inductive reasoning in data mining is as follows:  

After examining TR, it was found that group 1 has attribute A and group 2 has B.  

Henceforth, it is probable that in both TR and TE, group X has A and group Y has 
B.  

An individual I in TE has A.  

I is a member of X.  

After discussing the general relationship between induction and data mining, now 
we examine how TETRAD and induction are related. Inspired by the formal theory 
of inductive causation introduced by Pearl and Verma (1990), in which causal 
graphs are constructed by computing probability distributions in a data-driven 
iterative learning (updating) process, Glymour, Madigan, Pregibon, and Smyth 
(1997) tie automated data mining to induction, in the sense of making 
generalizations of recurring patterns to a broader context. To be explicit, rather 
than building a coherent global model which includes all variables of interest, data 
mining algorithms in TETRAD set the rules to inductively produce sets of 
statements about local dependencies among variables based upon the Causal 
Markov Condition. Without the aid of algorithms, a human inquirer has to generate 
categories using empirical data according to his/her judgment, and then further 
classify other data based on the data-driven categories. Given that the data set is 
huge, the number of variables is enormous, and thus there are many different 
strategies, it is very likely that that the human inductor will be locked into 
inefficient learning strategies. TETRAD and other inductive-based data mining 
approach utilize machine learning, in which inductive algorithms are provided with 
training data from a previous stage of the knowledge discovery process. The 
initially produced model tends to suffer from the problem of over-fitting. 
Nonetheless, the structure learned from the previous step can be used by the 
algorithms to inspect another data set, and then the over-fitted model is revised in 
the light of new information. This iterative process is said to be self-correcting by 
the algorithms. Thus, the learned computer program can inductively build a model 
as more and more data sets are supplied to the program (Cooper & Herskovits, 
1992).  

Goodman: New riddle of induction 

While the limitations of simple empirical generalizations are surmountable by 
categorizing the data and formulating theories, the most serious challenges to 
justification of induction comes Goodman. Before introducing Goodman’s 
challenge, it is necessary to mention Hume because Goodman introduced the “new 
riddle of induction” by analogy with Hume's classical problem of induction. Hume 
(1777) argued that induction could be justified if and only if we know that 
instances of which we have no experience resemble those of which we have 
experience. But we have no grounds that it is not question-begging for believing 
the statement that “the future will resemble the past”. Although this seems to be a 
serious challenge to our ability to give good reasons for using induction, in practice 
it does not stop us from using it, nor does it present any specific problems 
concerning how we can use induction.  

The Humean problem is sometimes known as “the old riddle of induction .” 
Goodman (1954/1983) introduced the “new riddle of induction ,” in which our 
conceptualization of kinds plays an important role. Goodman argued that 



whenever we reach a conclusion based upon inductive reasoning, we could use the 
same rules of inference, but different criteria of classification, to draw an opposite 
conclusion. Goodman’s example is: Suppose all emeralds examined before time t 
are green. At t, our observations support the statement that all emeralds are 
green. Inductively speaking, our evidence statements assert that emerald A is 
green, that emerald B is green, and so on; and each confirms the hypothesis that 
all emeralds are green. However, what would happen if another predicate, “grue” 
is introduced? “Grue” applies to all things examined before t if they are green but 
to other things if they are blue and not examined before t. Then at t for each 
evidence statement asserting that a given emerald is green, there is a parallel 
statement asserting that the emerald is grue. And the statement that emerald A is 
grue, emerald B is grue, and so on, will each confirm the hypothesis that all 
emeralds are grue. In this case emeralds A, B, C, examined after time t should be 
grue, and therefore blue. In other words, the prediction that all emeralds are 
green and the prediction that all emeralds are grue are both confirmed by 
evidence statements describing the same observations. Goodman and others 
further argue that it is difficult to find a principle that supports our preference for 
using “green” rather than “grue.” Thus, the new riddle is also known as “the grue 
problem.”  

The new riddle focuses on the problem of projectibility . Whether an “observed 
pattern” is projectible depends on how we conceptualize the pattern. Skyrms 
(1975) used a mathematical example to illustrate this problem: If this series of 
digits (1, 2, 3, 4, 5) is shown, what is the next projected number? Without any 
doubt, for most people the intuitive answer is simply “6.” Skyrms argued that this 
seemingly straight–forward numeric sequence could be populated by this 
generating function: (A–1)(A–2)(A–3)(A–4)(A–5)+A and let A be the input digit. 
However, using the preceding function, the sixth number is 126 and it 
substantively deviates from the intuitive projection. Skyrms pointed out that 
whatever number we want to predict for the sixth number of the series, there is 
always a generating function that can fit the given members of the sequence and 
that will yield the projection we want. This indeterminacy of projection is a 
mathematical fact.  

The new riddle, an instantiation of the problem of theory under–determination , is 
germane to quantitative researchers in the context of “model equivalency ” and 
“factor indeterminacy ” (DeVito, 1997; Forster, 1999; Forster & Sober, 1994; 
Kieseppa, 2001; Raykov, & Marcoulides, 2001; Turney, 1999). The new riddle 
arises because scientific theories are under–determined by our limited evidence in 
the sense that the same phenomenon can be explained by rival models that are 
logically incompatible. In factor analysis, for example, the choice of adopting a 
one–factor or a two–factor model may have tremendous impact on subsequent 
inferences.  

One may argue that the example used by Goodman is too unrealistic for scientists 
to obtain meaningful implications. How could one be unsure about what color a 
piece of rock should be? In Goodman’s example, there is an association between 
being an emerald and possessing certain color. But it is possible that this 
association arises for the wrong reasons. All objects labeled as emeralds result 
from classification based upon conceptualization, but classification and 
conceptualization affect the application of the predicate “grue.” For example, some 
emeralds grow on natural colorless beryl seeds, which become coated on both 
sides, and their growth rate is as slow as 1 mm per month. If these “baby” 
emeralds are classified as emeralds, what conclusions would we come up 
regarding the color of emeralds? In addition, natural emeralds appear in a wide 
variety of green and bluish green because there is a wide spectrum of clarity, 
along with various numbers of inclusions (an inclusion is any material that is 
trapped inside a mineral during its formation). Almost all natural emeralds are 
highly included and it is quite rare to find an emerald with only minor inclusions. 
There is an old Chinese story about how a King mistakenly tortured an expert on 
germ stones who donated his most treasured jade to the Royal court, but the King 



failed to identify the rare jade for his eyesight could not “pierce through” the 
inclusions of the jade.  

There is an equivalent story in the West. When William Atherstone announced that 
he found a 21-carat diamond in South Africa in 1867, no one believed him because 
since the fourth century India had been the only source of diamonds for a 
thousand years. In addition, geologists at that time had strong pre-conceptions 
about the geological compositions of South Africa and the formation process of 
diamonds. Diamonds in the raw form are buried at great depths inside the earth. 
When a volcano erupts, diamonds are thrown out of the top of the volcano along 
with molten rock, and therefore the best place to find diamonds is in the center of 
an extinct volcano. However, there are no volcanoes on the mainland of South 
Africa, and only two are found in the south Indian Ocean, namely, Marion Island 
and Prince Edward Island. In 1868 England sent one of the best mineralogists, 
James Gregory, to South Africa for further investigation. After examining many 
rock samples, Professor Gregory “inductively” concluded that there were no 
diamonds in the whole of South Africa due to his pre-conceptions of what one 
might expect from South Africa. He asserted that any genuine diamonds found in 
South Africa had most likely been swallowed and excreted by wandering ostriches 
from a far off land. You may think that this mistake is laughable because today 
indeed there are many diamond mines in South Africa, but you must realize that 
Professor Gregory had used the best scientific apparatus accessible to him at his 
time. Today our best equipment is high-power computer. Had computers been 
available to Professor Gregory, would he have been discovered diamonds in South 
Africa? Probably the answer is still “no” if Professor Gregory had programmed the 
computer based on faulty conceptualization of geology, such as attending to traces 
of volcanoes. What was unknown to Professor Gregory at that time is the 
Kimberlite pipe, which is resulted from explosive volcanism deep down in the 
earth. These explosions produce vertical columns of rock, commonly known as 
dikes, in which raw diamonds are embedded. The diameter of a kimberlite pipe at 
the surface is typically a few hundred meters to a kilometer only. The first place 
where kimberlite pipes were recognized is Kimberley, South Africa, and thus this 
kind of mineral was named after the location of the discovery (Nigel, 1980; 
Morton, 1877). When Professor Gregory did not even know what a kimberlite pipe 
is, how could any automated program help him to recognize the potential presence 
of diamonds?  

The morals of this story are: first, as Kuhn pointed out, scientists are not 
independent of habit, custom, and tradition. Rather they tend to stay within their 
comfort zone no matter how a complex explanation added to the existing 
paradigm violates the principle of Occam Razor (birds ate the diamonds in a 
faraway land and then traveled to South Africa). Second, our conceptualization of 
mineralogy, in the first place, determines how we classify stones, and 
subsequently this affects what attributes we can see in particular categories of 
stones. Just like inductive projection, in causal inferences different 
conceptualizations can lead to different conclusions on the causal structure.  

Take classifying rocks as an example again. Based on the TETRAD approach, 
Ramsey, Gazis, Roush, Spirites, and Glymour (2002) developed automated 
methods for mineral identification from reflectance spectra, which is detectable by 
remote infra-red sensing of terrestrial and extraterrestrial surfaces. It is 
noteworthy that this kind of mineral classification is not merely descriptive; rather 
it involves tacit causal inferences because the composition of rocks are tied to 
specific geological formation processes. In other words, there are theoretical 
causal links between mineral formation processes and their reflectance spectra 
detected by infra-red sensors. However, when they supplied the algorithms with 
training examples for carbonate identification, they found that the trained 
algorithms did not perform well if the test data contained significant fractions of 
minerals not in the training set. A further problem is that in reality the reflectance 
spectra of rocks, soils and other materials are not in general linear or even 
additive functions of the spectra of their component minerals, and such training 



procedures therefore lack realistic training sets. No doubt machine learning is 
more accurate and efficient than humans in processing a large number of 
observations. However, we must keep in mind that in the initial stage we humans 
collect the observations and supply the computer with the predicates.  

Can Akaike Information Criterion solve the new riddle?  

Some quantitative researchers may argue that various criteria, such as the Akaike 
Information Criterion (AIC) (Akaike, 1973), have been developed to guide us in 
model selection, and thus the issue of Goodman’s riddle and model equivalency is 
exaggerated. This optimism is unwarranted. Ockham’s razor has been taken for 
granted by many researchers since its introduction by the 14th-century English 
logician William of Ockham. Not surprisingly, AIC is in alignment to Ockham’s 
razor: Given all things being equal, the simplest model tends to be the best one; 
and simplicity is a function of the number of adjustable parameters. 1 Actually, AIC 
does not provide a fool-proof method for choosing between models. The problem 
with AIC, as well as other model selection criteria, is that the number of 
parameters associated with a model is a matter of conceptualization. DeVito 
(1997) gave AIC a litmus test by applying AIC to the grue problem. Let’s revisit 
the two predictive models formulated by Goodman with respect to the 
observations of emeralds:  

Grue model: If E is an emerald and is observed before time t, then E is 
green; otherwise, if E is an emerald and is observed after t, then E is 
blue.  

Green model: If E is an emerald, then it is green.  

According to AIC, when both of these two models fit the data, we should favor the 
Green model because it is the most parsimonious. To be specific, the Grue model 
has one adjustable parameter, namely, t, while the Green model has no adjustable 
parameters at all. Apparently, the Green model is simpler and thus is considered 
better than the Grue model. Could this approach solve the Goodman’s riddle once 
and for all?  

No. Because both the Grue model and the Green model can be re-conceptualized 
in the way that their numbers of adjustable parameters are swapped. If we change 
the way of how we conceptualize the world, emeralds can no longer be just green 
or blue; instead, they can be thought to be grue or bleen. As a result, the grue 
model would have no adjustable parameters while the Green model would have 
one adjustable parameters. Consider the following two models.  

Grue model: If E is an emerald, then E is grue.  

Green model: If E is an emerald and is observed before time t, then E is 
grue; otherwise, if E is an emerald and is observed after t, then E is 
bleen.  

In this case, the Green model, according to AIC, seems to be more complex and 
hence should be rejected. The results of applying AIC are relative to how we 
conceptualize the world, which is the very essence of the Goodman’s riddle. At the 
present time, there are no commonly agreed solutions to either the new riddle or 
the model selection criteria. To make the inductive system of TETRAD more 
defensible, Glymour and his colleagues need to take the Goodman’s challenge into 
account by addressing the issue of how conceptualization of constructs affects the 
subsequent modeling.  



Skinner’s challenge  

Granted that the latent constructs being put into the model are well-understand 
and clearly defined, and by automation a pattern among these constructs 
eventually emerges out of the “haystack.” But Hume may be right that our 
psychological disposition to see the pattern as a causal link is illusory. Even if 
social scientists dare to ignore Hume and other philosophers, the same warning is 
established in the realm of psychology. One of Skinner’s experiments (1947) 
demonstrated how an accidental reinforcement schedule could lead to 
superstitious behaviors. In the experiment, a pigeon is put into a box and 
occasionally a food hopper is swung into place so that the pigeon can eat from it. 
If a clock is arranged to present the food hopper at regular intervals with no 
reference whatsoever to the bird's behavior, operant conditioning usually takes 
place; the bird developed certain senseless behaviors to beg for food based on the 
perception that the clock has something to do with food delivery.  

Collaborated with some psychologists, Glymour announced the discovery that 
humans have conducted inquiry in the form of Bayesian network by the age of five 
(Gopnik, Schulz, & Glymour, 2001; Glymour, 2003; Gopnik & Schulz, 2004). At 
first glance, this cognitive disposition seems to support making data-driven causal 
conclusions, but this begs for further questioning. Hume had said that it is our 
natural instinct to see faulty causal links. Even if psychologists had confirmed that 
it is natural for humans to engage in causal reasoning in certain ways, it does not 
provide any justification of the causal conclusion. On the contrary, it makes the 
matter worse by “naturalizing” a causal model as psychological. When a causal 
structure is proclaimed, is it considered a model depending on our cognition? 
Further explanation of what a true causal structure means is on the shoulders of 
Glymour. Further, other psychologists found that the frequency approach appears 
to be more natural to learners in the context of quantitative reasoning (Gigerenzer 
& Edwards, 2003; Hoffrage, Gigerenzer, & Martignon, 2002). Proclaiming a 
particular reasoning mode as the universal human mind structure, needless to say, 
would lead to immediate protest. The issue of circularity in justification for 
induction remains unsettled because psychologists could not reach a consent 
pertaining to the human reasoning process. 

Conclusion  

It is important to emphasize that the objective of raising the issues surrounding 
induction is not to negate the validity of conclusions yielded from data mining or 
TETRAD. After all, up to the present time no one could sufficiently solve the new 
riddle of induction, which can be conceptualized in a broader context: under-
determination of theory by data. In this sense, a recurring pattern in the data 
could be explained by a genuine causal link or a psychological illusion. 
Paradoxically speaking, when a problem is so pervasive that all your rival schools 
of thought suffer from the same problem, this so-called problem ceases to be a 
problem (Laudan, 1977). Consider this hypothetical example: a NASA engineer 
complains that the Hubble telescope cannot transmit real-time images of another 
galaxy, and thus he coins a new term “the problem of under-determination of 
image by temporal gap.” This alleged weakness of imaging technology is hardly 
devastating because so far no telescope can work against physics by transmitting 
a real-time image of something that happened light years away. “The problem of 
under-determination of image by temporal gap” becomes serious if and only if 
someday a brilliant scientist is able to punch a wormhole in the space to enable 
the telescope instantaneously captures the image of a remote galaxy. By the same 
token, if Methodology A is subject to the problem of under-determination of theory 
by data, but Methodology B is not, we can assert that A is an inferior methodology. 
If all known methodologies cannot escape from the problem, the only solution is to 
try our best in scientific theory. Nonetheless, researchers must take both the old 
and new riddles into consideration while interpreting a recurring pattern resulting 
from automated data mining.  



Nonetheless, when a problem is pervasive and insurmountable, it does not 
necessarily imply that the methodologist can do nothing about it. One advisable 
action is to admit the fallible nature of the methodology by changing the 
confirmatory tone to exploratory. At the beginning of this paper, a “robust” finding 
regarding university student retention by data mining was cited (Druzdzel & 
Glymour , 1994). However, according to the Student Integration Model (Tinto, 
1975, 1982, 1997), many sociological and demographic variables must also be 
taken into consideration while studying retention. On the other hand, the Student 
Attrition Model (Bean, 1980, 1983, Bean & Metzner, 1985) approaches the 
problem of retention with an interest in psychological factors, thus numerous 
latent constructs are included. Both Tinto’s and Bean’s models began with far more 
relevant causal factors than Druzdzel and Glymour’s model. Interestingly, in a 
recent retention study using numerous variables extracted from the Arizona State 
University data Warehouse (Yu, DiGangi, Jannasch-Pennell, Lo, & Kaprolet, 2007), 
it was found that retention is strongly tied to “spatial” factors, including residence 
(in state/out of state) and living location (on campus/off campus), while average 
standardized test scores of incoming freshmen do not seem to affect the retention 
rate. This discrepancy is a typical example of how the initial input (selection of 
variables used for modeling) could affect the output. Weighing this evidence, 
Druzdzel and Glymour should be more cautious about claiming “robust” results.  

It is worth repeating that data mining, as an extension of EDA, aims to detect a 
pattern and suggest a plausible explanation rather than confirming a conclusion. 
One of common criticisms against data mining is that this automated methodology 
draws scientists away from a rigorous and thorough evaluation of each hypothesis 
in the presence of rival explanations. In the batch processing mode, researchers 
tend not to devote specific attention to any particular hypotheses. As a remedy, 
findings based upon data mining should never be treated as “robust conclusions.” 
Reconsider the example of university student retention. When different studies 
lead to different conclusions, a careful comparison between these studies by 
examining each theoretical model and each set of input variables is strongly 
recommended.  

Interestingly, Glymour is not the only scholar who uses “the needle in a haystack” 
metaphor for data mining. Elser (2006) also stated that making a fundamental 
biological discovery today is similar to finding a needle in a haystack because of 
the bewildering array of species and species interaction. Throughout previous 
decades the “haystack” in biology, referring to the contents of genetic information, 
has been growing at an exponential rate due to the advent of gene sequencing 
technologies. Faced with this challenge, some biologists viewed algorithms as a 
viable solution. On one hand, Elser did not deny the possibility that the 
development and application of mathematical tools can narrow the scope for 
searching the haystack. On the other hand, he put his hope on developing clear 
conceptual frameworks by integrating different branches of biology. In my view, 
aside from biological researchers, scholars in other disciplines should also go 
beyond making a dichotomous decision, in which one must avoid search 
algorithms altogether or one must fully embrace data mining without reservations. 
Both theoretical advances and quantitative formulations must happen 
simultaneously to cope with the expanding data sources. 

Again, this article is by no means intended to dismiss the value of data mining or 
automated model search algorithms. On the contrary, I agree with Glymour that 
automated data mining can compensate for several weaknesses of conventional 
methodologies. However, I express my skepticism toward the claim that 
automated data mining will lead to a paradigm shift in causal discovery. It is 
important to address that the essence of data mining is exploration instead of 
confirmation. Data mining and conventional hypothesis testing should work hand 
in hand rather than promoting the former as the emerging dominant paradigm as 
a replacement of conventional methodologies.  

Endnotes 



1. AIC is a fitness index for trading off the complexity of a model against how well 
the model fits the data. The general form of AIC is: AIC = 2k – 2lnL where k is the 
number of parameters and L is the likelihood function of the estimated 
parameters. Increasing the number of free parameters to be estimated improves 
the model fitness, however, the model might be unnecessarily complex. To reach a 
balance between fitness and parsimony, AIC not only rewards goodness of fit, but 
also includes a penalty that is an increasing function of the number of estimated 
parameters. This penalty discourages over-fitting and complexity. Hence, the 
“best” model is the one with the lowest AIC value. Since AIC attempts to find the 
model that best explains the data with a minimum of free parameters, it is 
considered an approach favoring simplicity. 
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