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Abstract 

The objective of this article is to illustrate that from the 
development of path modeling in the early 20 th century 
to the recent implementation of the TETRAD approach, 
the question concerning how causal factors can be 
identified prior to modeling has been a recurring theme to 
causal modelers and critics. Wright’s path analysis is the 
predecessor of structural equation modeling (SEM), but 
Wright was ahead of his time and thus his methodology 
was sadly ignored by his contemporaries. Nevertheless, 
during the last two decades Glymour attempted to 
reinstate causal interpretations for the path model using 
the TETRAD approach, which is considered an extension 
to SEM. Interestingly enough, Cartwright’s slogan “no 
causes in, no causes out” (1999, 2000) and Freedman’s 
“missing variable argument” (1997, 1998) in response to 
Glymour’s methodology echo the critics of Wright eighty 
years ago. Although the philosophical puzzle of causation 
has not been resolved once and for all, there are 
substantive improvements in the epistemological aspect 
of causal modeling, such as the introduction of 
counterfactual reasoning and manipulation theorem. In 
addition, abductive-based grounded theory is a promising 
approach to resolve the issue of variable identification 
prior to path searching. While Cartwright’s dismissal of 
causal discovery by probabilistic modeling may be 
exaggerated and even counter-productive, her review of 
various causal theories is noteworthy, and thus it is the 
conviction of the author that this type of inter-disciplinary 
inquiry and synthesis should be further pursued in order 
to advance epistemology and methodology of causal 
modeling. 

Introduction  

The objective of this article is to illustrate that from the development of path 
modeling in the early 20 th century to the recent revival of the TETRAD approach, 
the question concerning how causal factors can be identified prior to modeling has 
been a recurring theme to causal modelers and critics. Wright’s path analysis is 
considered a predecessor of structural equation modeling (SEM), but Wright was 
ahead of his time and thus his methodology was ignored by his contemporaries. 
The merits of the path model, which was developed in biology, were appreciated 
by sociologists in the 1960s, and recently re-introduced back to biology by plant 
ecologist and biometrician Bill Shipley (2000). However, the path model developed 
by Wright is considered a “complete” system in the sense that all relevant causal 
variables have been included. In other words, Wright’s so-called causal modeling 



serves to verify the causal factors and to measure their strength, not to discover 
causes. Not surprisingly, during the controversy of path modeling in the 1920s, 
Wright faced rejection from many prominent scholars, including R. A. Fisher. It 
was argued that the path model assumed a causal structure at the beginning, but 
without a mechanism for identifying the relevant causal factors, path analysis 
cannot be considered a true causal model. During the last two decades Glymour 
attempted to reinstate causal interpretations for the path model using the TETRAD 
approach. Eighty years after the introduction of path modeling, Freedman (1997, 
1998) articulated the "missing variable argument", while Cartwright (1999, 2000) 
raised the issue of “no cause in, no causes out,” further questioning the viability of 
finding general causal laws by probabilistic modeling. Although the philosophical 
puzzle of causation has not been resolved, there are substantive improvements in 
the epistemological aspect of causal modeling, such as the introduction of 
counterfactual reasoning and manipulation theorem. While Cartwright’s dismissal 
of causal discovery by probabilistic modeling may be exaggerated and even 
counter-productive, her review of various causal theories is noteworthy.  

It is my conviction that researchers are not necessarily bogged down by the 
potential problem of missing relevant variables. Grounded theory based upon 
abductive reasoning, another technique for discovering causal constructs, is a 
qualitative method that does not invoke any computation, yet its power for 
discovering relevant variables is no less than methods using rigorous algorithms. 
Please note that grounded theory is introduced in an inclusive fashion and it is by 
no means considered a replacement for quantitative methods.  

Path Analysis  

In the early 20 th century, biologist Sewall Wright developed a methodology 
named path analysis, regarded as the precursor to structural equation modeling 
(SEM), in an attempt to enable scientists to assert causal inferences. Simply put, a 
Pearson’s correlation coefficient is a non-directional or symmetrical covariation. 
The statement “A and B are significantly correlated” can be pictorially illustrated as 
“A ↔ B”. In other words, neither “A causes B” nor “B causes A” can be deduced 
from a correlation coefficient. However, Wright took advantage of the fact that 
some variables in biology are related in irreversible sequences, and thus one can 
make deductions of one-way causation. Thus, a path coefficient in the path model 
has a different notation: A --> B, which implies that there is a causal path from A 
to B.  

Mathematically speaking, a path coefficient was just a standardized regression 
coefficient, But what distinguishes it from a regression coefficient is that the path 
coefficient emphasizes causal interpretation rather than purely statistical 
description. In 1918 Wright used partial correlations to show that while general 
body size is tied most to variation in bone size, there are unique factors for skull 
and leg bone dimensions, respectively. It is noteworthy that even in this early 
work what are “causes” and what are “effects” are not solely identified from the 
data, but from the prior information brought to the analysis. In 1921, Wright 
further developed his methodology by employing a set of simultaneous equations. 
Some critics commented that his claim of causal relationships was ungrounded. In 
response to his critics, Wright argued that although a coefficient of correlation 
gives an absolute measure of association in a body of data, a path coefficient can 
be interpreted only from a particular viewpoint depending on the specification of 
the model. Wright admitted that his method was identical with those of multiple 
regression and factor analysis in a closed system, but the path analysis was 
designed for use in irregular systems with intermingled known and hypothetical 
variables or known and unknown path coefficients. where conventional methods 
cannot be applied well.  

Path analysis was not well received because some of his contemporaries could not 
see a way to verify the causal relations that Wright imposed on the model. Niles 



(1922) was one of many researchers who did not agree with Wright’s approach, 
but his concern was mainly philosophical rather than mathematical. Following the 
Pearsonian tradition, Niles regarded “causation” as nothing but mere correlation, 
and thus for him there is no philosophical ground for giving causation a broader 
meaning than partial or absolute association. From his perspective, there was no 
proof that causation is inherent to the laws of nature (Shipley, 2000). In addition, 
Niles disagreed with Wright on the assumption that a causal system could be 
initially set up and justified a priori (Denis & Legerski, 2006). Others were opposed 
to path analysis for methodological reasons. Tukey, the father of the exploratory 
data analysis, believed that path analysis was good, but not good enough. 
Comparing path analysis and regression analysis, Turner and Stevens (1959) 
preferred the latter. Shipley (2000) suggested that Wright’s method was rejected 
for two reasons. First, his orientation was contrary to the philosophical and 
methodological paradigms of the two prominent schools of thought of the time, 
namely, Pearsonian and Fisherian. In the Pearsonian school, which emphasized 
description and categorization, the search for “causation” was simply out of the 
question. For Fisherians, the central theme of research was to partition true 
variance and error variance through experimentation; hence, a path coefficient 
was nothing more than an extension of Pearson’s correlation coefficient. Second, 
Wright’s methodology was inadequate in comparison with Fisher’s fully developed 
randomized experimentation. The major shortcoming of Wright’s method was that 
causal relations were assumed into the model, but he did not propose a convincing 
way to test the hypothesized causal structure.  

Structural Equation Modeling  

Path analysis had been buried in the history of science for almost three decades. 
Fortunately, in the 1960s its potential merits were re-discovered by sociologist 
Hubert Blalock (1964), who at the time was facing problems with analyzing causal 
relations in sociological studies using partial correlations. Following up on Blalock’s 
work, Duncan recalled a lecture by William Ogburn that had mentioned Burks’s 
(1928) research, which was based upon Wright’s work. After reading those 
archives, Duncan began to apply path analysis to the study of socioeconomic 
achievement and subsequently to a wider array of sociological topics. In 1970 
Duncan and his colleagues organized a conference in Madison, Wisconsin. At the 
Madison conference Joreskog introduced the idea of Linear Structural Equation, 
which later was materialized in LISREL, the first software application for SEM.  

In 1979 Kenny shocked the methodology community with his book entitled 
Correlation and Causality, a bold attempt to extract causal conclusions from SEM 
and other multivariate procedures.1 The book starts with a provocative claim:  

Given the old saying that “correlation does not imply causation,” one 
might wonder whether the stated project of this book—correlational 
inference—is at all possible. Correlational inference is indeed possible 
through the application of standard multivariate statistical methods to 
a stated structural model (p.1).  

This theme recurs throughout the book. Like Wright, Kenny did not specify any 
causal discovery techniques; rather, he argued that before testing the model a 
causal structure must be pre-specified with reference to prior theories:  

Structural equation models require a blend of mathematics and 
theory. Although there are many interesting issues in the 
mathematics of models, the most difficult questions are those that 
translate theory into equations. This process of translation is called 
specification. Theory specifies the form of equations (p.22).  

In spite of Kenny’s good intention of transforming correlation into causation, this 
ambitious project attracted heavy criticism. For example, Ling (1982) made a 



strong protest to Kenny’s book, arguing that his approach is “a form of statistical 
fantasy” based upon “faulty fundamental logic” (p.490). Ling asserts that using the 
path analysis, as illustrated by Kenny, one can never disconfirm a false causal 
assumption, hence this methodology is “neither science nor statistics” (p.490).  

Aware of the theoretical shortcomings of Kenny’s approach, James, Mulaik, and 
Bret (1982) rigorously defended use of SEM as a causal modeling technique by 
introducing the philosophy of Simon (1952). According to Simon, mathematical 
and logical equations alone do not imply causal relations, but many researchers 
often given causal account of the behavior of a system expressed as a set of 
mathematical and logical relations. Instead, the theory of causal ordering should 
be employed to infer the causal dependency relations among variables. Some 
logicians treated connections between variables as nothing more than functional 
relations. For instance, Y = a + bX can be rewritten as X = (Y – a)/b. However, 
based upon Simon’s view of causation, not only do James et al. refuse to view 
causal modeling expressed by equations as symmetrical functional relations, but 
also they deny that causation can be defined in terms of logical implications. It is 
undeniable that the statement “If A then B” logically implies the statement “If not 
B, then not A.” But, if causal relations follow the form of logical implications, this 
would mean that “A causes B” implies “not B causes not A,” which is absurd. 
Consider this example: The statement “the rain causes Jones to wear his raincoat” 
does not imply that “Jones not wearing his raincoat causes it not to rain,” which is 
clearly false. Hence, James et al. assert that representation of causation takes the 
form of an asymmetrical functional relation in a self-contained or closed system. In 
their view, SEM is a type of causal modeling that consists of asymmetrical multiple 
equations. Put simply, the equation Y = a + bX as a representation of a cause-
effect relationship cannot be re-expressed as X = (Y – a)/b. The rationale is that 
theory can play a major role in the formulation of the causal order and can also be 
used to identify relevant variables in a self-contained system.  

From path analysis to SEM, causal modelers rely on theory to formulate a self-
contained system, which must initially include all relevant variables. From this 
perspective, SEM seems to be a tool best utilized to test (confirm/disconfirm) a 
theorized causal structure rather than to discover one. A structural model is said to 
be confirmed if the model is consistent with the data. However, data-model fit, in 
Van Fraassen’s term, solely fulfills the criterion of empirical adequacy. A theory is 
considered empirically adequate if and only if everything that it says about 
observable entities is well-established. Van Fraassen (1980) asserts, “Theory 
draws a picture of the world. But science itself designates certain areas in this 
picture as observable. The scientist, in accepting the theory, is asserting the 
picture to be accurate in those areas” (p.57). In actuality, this is an elaborate way 
to say that the purpose of scientific theory is to “save the appearance,” which 
means apparently the theory can explain the data. However, counting on fitness as 
the sole criterion to confirm a model, in the eyes of realists, is far from reaching a 
genuine causal conclusion, in which a causal mechanism underlying the internal 
structure of the world should be identified. In an attempt to fill-in this philosophical 
vacuum, Glymour (1982) developed a causal-oriented methodology based on the 
foundation of SEM, which will be discussed next.  

TETRAD  

During the past four decades SEM has gained the hegemonic status in multivariate 
statistics, however, its limitations with causal inferences is still a puzzle. For 
example, Bentler explains (2005) why SEM can yield a causal conclusion:  

A regression equation in the context of a causal model is called a 
structural equation, and the parameters, structural parameters. 
Structural parameters presumably represent relatively invariant 
parameters of a causal process, and are considered to have more 
theoretical meaning than ordinary predictive regression weights, 



especially when the regression equation is embedded in a series of 
simultaneous equations designed to implement a substantive theory. 
The variables used in the equations must, of course, adequately 
represent critical substantive concepts, and the model design must be 
appropriate to the theoretical specification and should include 
relevant causal variables if at all possible (EQS online manual, 
Chapter 2).  

Careful readers can see that Bentler says nothing more than what Wright had said: 
Based on prior knowledge of a substantive theory the model can be constructed to 
represent critical causal factors. But, the initial question about how the model can 
identify causal factors remains unanswered. To address the issue of causal 
discovery, researchers in the Philosophy Department at Carnegie Mellon University 
(CMU) have produced a software module named TETRAD for discovering the causal 
influences among constructs/variables using automated search algorithms 
(Glymour,1982).  

The search algorithm in TETRAD, as its name implies, utilizes Spearman’s tetrad 
difference equations vanishing tetrads (Hart & Spearman, 1913). Thus, in order for 
the program to find a subset of measured variables for a factor model, at least 
four indictors (measured variables) per factor are required. Tetrad refers to the 
difference between the product of a pair of covariances and the product of another 
pair among four random variables. For example, if there are four variables, 
namely, X 1, X 2, X 3, and X 4, there will be three tetrad difference equations:  

D1 = s 12 s 34 - s 13 s 24  

D2 = s 13 s 24 - s 14 s 32  

D3 = s 14 s 42 - s 12 s 43  

If the tetrads equal zero, they are called vanishing tetrads, which indicate that the 
four variables share a common latent factor. 2 In other words, the researcher 
should obtain zero partial correlations when the model is linear. In TETRAD, 
significance tests are conducted on partial correlations to determine whether two 
variables are independent given fixed values for some set of other variables. This 
requirement is called conditional independence, which will be discussed in a later 
section.  

Although the tetrad difference equation was the first attempt to detect latent 
constructs, it was eventually overshadowed by other techniques such as principal 
components (Hotelling, 1933), maximum likelihood (Lawley & Maxwell, 1971) and 
weighted least squares (Browne, 1984). Nonetheless, after the vanishing tetrad 
approach was revived by Glymour and his colleagues in recent years, many 
researchers also endorsed it in various applications. For example, when Mulaik and 
Millsap (2000) defended use of four indicators per factor in their four-step 
approach for testing a SEM, they praised the tetrad approach for its merits of over-
determining the latent variable. To be specific, one can always find a perfect fit 
between a uni-dimensional factor model with three positively correlated indicators. 
In this case no test of the single-factor model is possible with this set up. 
However, four positively correlated variables may not have a single common 
factor, and as a result, this over-identified common-factor model is testable or 
refutable.  

Counterfactuals  

TETRAD’s search algorithm, which explores many possible alternate models, can 
be viewed as a form of manipulation by counterfactual reasoning (Meek and 
Glymour, 1994). In other words, the prediction of the effect of an intervention on a 



system is a counterfactual prediction, meaning that it is not a prediction about the 
existing population, but about a population that does not exist and might never 
exist (Scheines et al., 1998).  

Counterfactual reasoning, as the name implies, is about asking “what-if” 
questions. When X occurs and Y follows, researchers cannot simply jump to the 
conclusion that X causes Y. The relationship between X and Y could be “because 
of,” “in spite of,” or ‘regardless of.” A responsible researcher would ask, “What 
would have happened to Y if X were not present?” In other words, the researcher 
does not base one’s judgment solely on the existing outcome, but also other 
potential outcomes.  

The TETRAD methodology is tied to the Fisherian tradition, which endorses use of 
randomized experiments that often have a quasi-counterfactual aspect. To be 
specific, the control group gives the information about how Y behaves when X is 
absent, while the treatment group tells the experimenter about how Y reacts when 
X is present. Strictly speaking, this comparison is not counterfactual because both 
the results of the control and treatment groups are actually observed. Rather, the 
comparison between them is used to make counterfactual inferences in other 
situations outside the experimental result. Take clinical research as an example. 
Assume that a drug is given to the treatment group and subjects in the control 
group receive a placebo treatment. If the health condition of the treatment group 
patients improves while that of the control group patients deteriorates, potentially 
resulting in death without proper treatment, it would clearly be unethical for the 
researcher to carry on the experiment. Rather, the study would halt immediately 
and counterfactual statements based on the observed result so far, such as the 
following statement, would be made: “If patients who suffer from disease X do not 
take Drug A, they would die within three months.”  

The counterfactual approach taken by experimenters is limited in two senses. First, 
according to researchers who strongly embrace the experimental tradition, causal 
inferences cannot be made from non-experimental data. The preceding example 
depicts a limited experiment, but in some cases experiments are impossible or 
entirely unavailable. For example, we cannot use human subjects to 
experimentally test the impact of smoking on human health. Second, the 
experimenter can manipulate only few scenarios, but by manipulating many 
possible models, the researcher may be able to draw causal interpretations from 
non-experimental data.  

Moreover, in the classical Fisherian probability theory, the researcher rejects the 
null hypothesis because the observed results would be highly improbable 
compared to other possible outcomes (Howie, 2002). This inferential reasoning 
based upon comparison across different possible outcomes is clearly 
counterfactual. Fisher’s randomization exact test also utilizes the same sort of 
counterfactual logic. The researcher asks what other potential outcomes would 
result from all other possible scenarios, and the judgment is based on the 
comparison between the actual outcome and many simulated outcomes (Yu, 2003, 
2004, 2006).  

Manipulation  

In an approach built on Fisher’s legacy, Meek and Glymour (1994) proposed the 
“manipulation theorem:” Given an external intervention on a variable (A) in a 
causal model, the researcher can derive the posterior probability distribution over 
the entire model by simply using the conditional probability distribution of A. If this 
intervention is strong enough to set A to a specific value, the researcher can view 
the intervention as the only cause of A. Nothing else in the model needs to be 
modified, as the causal structure of the system remains unchanged. In other 
words, if counterfactual scenarios can be generated under such assumptions by 
manipulating values and variables in equations, causal inferences can be made.  



Although Woodward and Glymour are not in the same research camp (and indeed 
Glymour [2004] criticizes Woodward on some points), they share much common 
ground concerning manipulation and intervention. Experimentalists who follow the 
Cook and Campbell (1979) approach regard so-called “causal inferences” in non–
experimental settings as illegitimate because manipulating equations in modeling 
should not be treated as real intervention. However, manipulating equations is like 
conducting thought experiments in a theoretical sense (Woodward, 2003). 
Conventional wisdom suggests that one may infer causal relationships in practical, 
experimental, and “applied” science contexts, in which physical changes of 
variables can be manipulated and observed. However, it seems counter-intuitive to 
think of causal relationships in “pure” or theoretical sciences in this way. Thought 
experiments have been widely used in theoretical physics, game theory, 
economics, and theoretical evolutionary biology (Cooper, 2005). It is problematic 
to maintain two distinct notions of causation, one in practical contexts and the 
other in theoretical contexts. It is possible that due to technological advances, 
some studies in the past that were confined to thought experiments can eventually 
be scrutinized in physical experiments. Take the Einstein-Podolsky-Rosen (EPR) 
experiment as an example. Although originally it was conceptualized as a thought 
experiment by Einstein, Podolsky, and Rosen to argue against “entanglement” in 
quantum mechanics, later technological advancement enabled scientists to carry 
out actual experiments regarding entanglement and locality. It was demonstrated 
that non-local effects on particles were present and the EPR’s claim of “locality” of 
influences was rejected (Aczel, 2003).  

The meaning or role of causal claims should be the same in theoretical and 
practical situations. Further, a process or event could still qualify as an 
intervention even if it does not involve human action (Woodward, 2000, 2001, 
2003). In other words, a purely “natural” process involving no animate beings at 
all can qualify as an intervention if causal information is embedded. This type of 
research is often described by scientists as a “natural experiment.”3 Moreover, 
even when manipulations are carried out by human beings, it is the causal 
features of those manipulations that matter for recognizing and characterizing 
causal relationships. In experiments, human intervention occurs in the real world. 
In the mathematical world, intervention or manipulation happens in a 
counterfactual fashion, or in “other possible worlds.” The intervention yields 
answers to questions like “what would happen to Y if X1 were added to the model 
and the coefficient of X2 were down–weighted?” In this case, whether or not the 
interventions that set the value of Xs and Y are carried out by human beings and 
whether or not they have in fact taken place is irrelevant (Hausman & Woodward, 
1999).  

Intervention as it occurs using TETRAD fits this idea. Human intervention in 
experiments does not create causal information or make the data ready for causal 
structure. Causal properties have already been embedded in the subject matter 
and experimental control is a way to reveal the causal information. If the data are 
non–experimental, causal characteristics are still within the data model. 
Mathematical intervention, by the same token, makes the causal relationships 
more obvious, if there are any. In TETRAD, causal structure is represented in a 
system of equations. When the researcher changes the variables and/or the 
coefficients of the equations, he/she is changing the mechanism(s) or relationship
(s) represented by it. We can view this as a matter of intervening on the 
dependent variable in the equation so that the value of that variable is now fixed 
by the intervention rather than by the variables that previously determined its 
value (Woodward, 1999).  

During the 1920s, Wright’s path modeling was under severe criticisms for the 
model is treated as a close system based on the assumption that all relevant 
variables have been included. Interestingly enough, criticisms made by 
contemporary mathematician Freedman and philosopher of science Cartwright 
against causal modeling echo the controversy of path modeling eighty years ago.  



Missing variable argument  

Can TETRAD modeling yield causal conclusions in the absence of inputted causal 
information? In Freedman’s view, if some variables that play crucial causal roles 
are omitted at the beginning, the selection algorithms may not be capable of 
recovering the omitted variables and the researcher may get the wrong 
conclusion, misled by the so-called best fit. Usually, the impact of random 
variation and omitted variables on the model are represented by the error terms. 
The errors are assumed to be drawn independently from a Gaussian distribution. 
Generally, the error distribution is not empirically identifiable outside the model, so 
it cannot be studied directly without the model. The error distribution is an 
imaginary population and the errors are treated as if they were a random sample 
from this imaginary population. Although structural equation models seem 
sophisticated, the same old problems have been swept under the carpet, because 
random variation due to unaccounted variables is represented in the same old way 
(Berk & Freedman, 2003). Simply put, when relevant variables are omitted, no 
one can tell how much error is in the model.  

Freedman’s argument is essentially “If you don’t know enough about causes, you 
cannot conduct causal modeling.” But what is considered “enough”? Actually, it is 
totally acceptable to miss some variables and then expand the system by adding 
more variables later. As a matter of fact, in the history of science even successful 
theories could not include all relevant variables and accurately predict every aspect 
of a phenomenon. Consider the example of cognitive assessment models. In 
recent years psychometricians have recommended including cognitive psychology 
in assessment (National Research Council, 2004). Rather than hastily inventing 
test items, item authors are advised to conduct a careful task analysis by 
decomposing a complex task into sub-tasks in a Markovian process: the success of 
completing the step, A1, depends on the pre-requisite, A2; A2 depends A3 and A4; 
A3 depends on A5 while A4 depends on A6 and A7; and so on. These subtasks 
should be mapped to a series of test questions that specifically reflect the required 
mental constructs for accomplishing the subtasks, so that the exam can perform 
diagnosis based on conditional probabilities of the failure or success of each 
subtask. In other words, item authors must understand the cognitive process of 
the students well enough to create a cognition-item map. However, it is extremely 
difficult, if not impossible, for item authors, psychometricians, cognitive 
psychologists, and educational psychologists to include all relevant variables in 
such complicated cognitive processes. There will always be missing variables, but 
the expectation is that as this new assessment movement grows, more and more 
variables will be added into the cognitive assessment models. Consider 
assessment again. A Rasch model or a one-parameter item response theory model 
completely ignores the discrimination and guessing parameters. The discrimination 
parameter acknowledges the fact that the same item might have different difficulty 
levels to examinees of different ability, while the guessing parameter takes into 
account the fact that there is a chance that examinees who know nothing about 
the subject matter could score the item by guessing. One may argue that these 
are important variables, yet psychometricians are still able to conduct meaningful 
assessment with a Rasch model or a one-parameter item response theory model.  

“No causes in, no causes out”  

Another skeptical view is expressed by a slogan introduced by Cartwright (1999): 
“no causes in, no causes out” (p.39). In her view, there is no way to get causal 
information from equations and associations. New causal knowledge must be built 
from old, empirical causal knowledge. In other words, the empiricist’s rule 
embraced by Cartwright is that the relevant data are the data that will inform us 
about the truth or falsity of the hypothesis, given the other known facts. Glymour 
et al. include all possible combinations of variables and paths in the model and 
then the irrelevant ones are eliminated. Cartwright argued that if relevant 
variables and genuine causes are not included at the beginning, then this 



elimination approach is useless. For these reasons, Cartwright strongly criticized 
Glymour et al.’s theory:  

Because Glymour, Scheines, Kelly, and Spirtes employ the 
hypothetico–deductive method, they must proceed in the opposite 
order. Their basic strategy for judging among models is two–staged: 
first list all the relevant relations that hold in data, then scan the 
structures to see which accounts for the greatest number of these 
relations in the simplest way. That means that they need to find 
some specific set of relations that will be relevant for every model. 
But, from the empiricist point of view, no such thing exists (p.78).  

In questioning the applicability of Causal Markov Condition (CMC), a crucial 
assumption of TETRAD, Cartwright (1999) used a classical example to argue that 
researchers may take the risk of confusing a co–symptom with a cause: R. A. 
Fisher’s hypothesis that smoking does not cause lung cancer. Rather, smoking and 
lung cancer are caused by a common cause, namely a special gene that increases 
the tendency to smoke and to get cancer. Not surprisingly, Cartwright asserted 
that to investigate a hypothesis like this, one must conduct a randomized 
experiment instead of counting on CMC and mathematical intervention of non–
experimental data.  

The statement “no causes in, no causes out” is tied to Cartwright’s notion of 
nature’s capacities in a dappled world (1999). The so-called dappled world is a 
world that is not governed by universal laws. Rather, every phenomenon is a 
consequence of many interacting parts, thus talking about universal causal laws 
doesn’t make sense in a dappled world. As a remedy, she proposes thinking of 
nature’s capacities in different situations. Cartwright argues that statistical 
methods and probability can support causal inferences if and only if the probability 
of the effect given the presence of the alleged cause is higher than the probability 
of the effect given the absence of the cause in all conditions. But Cartwright cites 
Simpson’s Paradox (Simpson, 1951), in which a conclusion drawn from aggregate 
data is contradicted by the conclusion drawn from the contingency table based 
upon the same data, to deny that this condition can be met. For instance, in 
England once a 20–year follow–up study was conducted to examine the survival 
rate and death rate of smokers and non–smokers. The result implied a significant 
positive effect of smoking because only 24% of smokers died compared to 31% of 
non–smokers. However, when the data were broken down by age group in a 
contingency table, it was found that there were more older people in the non–
smoker group (Appleton & French, 1996). Based on Simpson’s Paradox, Dupre and 
Cartwright (1988) suggested that there are only probabilistic capacities, but no 
probabilistic causal generalizations at all. Hence, according to Cartwright, we have 
to know what all other interacting causes are and how they work in order to 
conduct inquiry about statistical and probabilistic causation in specific situations. 
Clearly, Cartwright and Glymour’s ideas are quite diametrically opposed.  

To be more elaborate, “no causes in, no causes out” means “no all inter-entangling 
causes in, no causal structure out.” Knowledge of interacting causes comes from 
sources other than statistical data, and once they are known, statistics becomes 
irrelevant because the causes are obvious. Those interacting causes that render 
universal causal laws useless are usually the missing variables that have not been 
included in the model. Along this line, Cartwright’s argument is similar to 
Freedman’s.  

Cartwright (1999) cites an example introduced by one of the founders of the 
Vienna Circle, Otto Neurath, to illustrate why prediction and causal explanation 
appealing to universal laws are doomed to fail. She explains that if you drop a ten 
thousand dollar bill in St. Stephen’s square on a windy day and expect the bill 
would behave according to the second Newtonian law of mechanics, you will fail to 
predict the trajectory. Indeed, the bill will be swept away by the wind and no 
physicist can predict where it will land.  



While the above point sounds philosophically interesting, in practice physicists and 
engineers do not subscribe to Cartwright’s idea. In the late 1950s and early 1960s, 
Americans were deeply concerned with the “missile gap” and space race after the 
USSR successfully tested their Inter-Continental Ballistic Missile (ICBM) system 
and launched the first satellite, Sputnik, by their powerful rocket, R7. When 
President Eisenhower urged US scientists to catch up in research on long range 
missiles, would he have felt better if an American scientist said, “Don’t worry, the 
trajectory of missile path could not be explained by universal laws. Many other 
causal factors that are unknown to us might deflect the route and thus no one 
could predict exactly where the Russian missile would hit?” Unlike the ten 
thousand dollar bill, a missile would never be affected by the strong wind. When 
President Kennedy set his goal of landing a man on the moon by the end of 1960s, 
would he have been discouraged if a scientist said, “It is impossible to do space 
travel. There are so many unknown factors beyond the terrestrial domain that no 
physicist could be certain that our spacecraft can land on the planned location”? To 
paraphrase JFK’s speech: Researchers look for causal modeling not because it is 
easy, but because it is hard!  

Many physicists and philosophers of science question whether the example of the 
un-predictable ten thousand dollar bill can negate the universal applicability of 
Newtonian mechanics and other laws in physics. Actually, the bill’s deviation from 
a free-fall trajectory can be explained by other forces, such as the wind and air 
resistance (Hoefer, 2003). It is important to distinguish a phenomenologically 
dappled world from an ontologically dappled world. In the former, even if 
fundamental laws exist, the world appears to be disunified due to the limitations of 
human knowledge. In the latter, the world is fundamentally disunified, no matter 
how it appears to us (Hohwy, 2003). If there are laws other than the Newtonian 
mechanics that can explain the movement of a bill on a windy day, then this 
example should be put under the first category. More specifically, a 
phenomenologically dappled world does not necessarily imply an ontologically 
dappled one.  

At the fundamental level, laws tend to have few exceptions. For example, a 
hydrogen atom in a spectrometer is much the same as a hydrogen atom floating in 
your living room. The existence of a stable state, in which the proton and electron 
are bound to each other spatially, yet never collapse, is another good example 
(Hoefer, 2003). Aside from the example of the flying bill, Cartwright cites many 
other examples from physics, however, all of the theories that she lists under 
classical mechanics for demonstrating the failure of fundamental laws are indeed 
sub-theories of other more encompassing theories (Smith, 2001).  

The dominant view regarding the stability of fundamental elements and universal 
laws among physicists is that the concepts of electrons, protons, neutrons, 
neutrinos, and quarks, as well as the theories of quantum mechanics, general 
relativity, and special relativity are here to stay (Hacking, 1999). Whatever 
revolutionary changes physics may introduce in the future, it is very unlikely that 
the basic ideas encompassing electrons, protons, neutrons, neutrinos, and quarks 
will be found false and their causal relations rejected.  

In fairness to Cartwright, her notion of nature’s capacities in a dappled world is not 
just to argue against general causal laws; rather, her motivation is to counteract 
the trend of seeking for complete and universal explanations of every physical 
phenomenon. String theory is a typical example of this bold attempt (e.g. Greene, 
1999, 2004). According to Cartwright (2000), the vision of completeness is 
typically combined with some kind of reductionism. In the past, reductionism was 
vertical or downward, in which laws in one discipline were said to be explained by 
those in another discipline at a more fundamental level. For example, biology is 
said to be reduced to chemistry whereas chemistry can be reduced to physics. 
Today, reductionism is horizontal or cross-wide, in which diverse phenomena 
studied by different disciplines are governed by a few fundamental laws (Ruphy, 
2002). Interestingly enough, while Cartwright is critical of any form of 



reductionism, her idea is a form of upward expansionism. She uses physics as a 
starting point to illustrate the non-existence of universal laws, and then gradually 
expands this notion beyond physics to social sciences and other disciplines.  

Further, while it is reasonable to question the completeness thesis, it does not 
follow that “without complete knowledge, no causal modeling is possible.” It is 
understandable to warn causal modelers about the danger of over-generalization, 
especially in policy studies, 4 but it is doubtful whether objecting that a model may 
leave out some genuine causes or relevant variables and consequently rejecting 
the method could help scientific progress at all. First, who could affirm that all 
relevant variables are included in the model except an omnipotent God? Second, is 
it really necessarily to include all relevant variables? In defense of his standpoint, 
Glymour (1999) wrote,  

Cartwright is perhaps correct that the whole truth about anything is 
very complex; but, quite properly, science is seldom interested in the 
whole truth, or aided by insistence upon it. In my view, an inquiry 
that correctly found the causes of most of the variations in a social 
phenomenon and neglected small causes would be a triumph” (p.59).  

Glymour clearly appreciates the difficulty in uncovering truth in any situation, 
however, feels that useful knowledge can still be gained from such “imperfect” 
research.  

Discussion  

As illustrated above, the issue of identifying causal variables has been repeated by 
critics, such as Niles, Fisher, Ling, Freedman, and Cartwright, throughout the years 
since the development of path modeling, SEM, to TETRAD. Denis and Legerski 
(2006) are correct that the original path model introduced by Wright and revived 
by Blalock assumes prior causal factors and thus it is nothing more than a fancy 
regression model. However, Glymour (2001) also treat regression-based 
approaches as the wrong way for causal inferences. In the CMU group, path 
modeling has evolved to a more sophisticated methodology based upon conditional 
independence rather than regression coefficients. More importantly, the theories of 
counterfactual reasoning and manipulation seem promising. It is true that the 
same question has been repeated, but the answers are getting better and better.  

One of the reviewers of this manuscript doubted whether there is, or ever will be, 
a quantitative solution to the problem of causality in the social sciences. In my 
view, a purely quantitative approach is doomed to be trapped by the same 
critiques of path modeling and Freedman and Cartwright’s criticism of TETRAD: 
“How can the researcher come up with a list of relevant variables in the first 
place?” Rather, a mixed-method, in which an initial qualitatively-oriented 
abductive reasoning for theory generation and a subsequent quantitative-based 
path searching are integrated, should be considered by causal modelers. In the 
context of causal discovery, abduction (Peirce, 1934/1960) is indispensable at the 
stage of identifying and categorizing variables and factors, which are the building 
blocks of causal modeling. Without this essential component, neither automated 
data mining nor conventional hypothesis testing could build a meaningful causal 
model.  

The function of abduction is to look for a pattern in a surprising phenomenon and 
to suggest a plausible hypothesis. The following example illustrates such function:  

The surprising phenomenon, B, is observed.  

But if A were true, B would be a plausible explanation.  



Hence, there is a reason to suspect that A might be the explanation.  

Using deductive reasoning, the preceding example is akin to the fallacy of 
affirming the consequent. Consider this example. It is logical to assert that “It 
rains; if it rains, the ground will be wet; hence, the ground is wet.” But any 
reasonable person can see the problem in making statements like: “The ground is 
wet; if it rains, the ground will be wet; hence, it rained.” Nevertheless, in Peirce’s 
logical framework this abductive form of argument is entirely acceptable, 
especially when the research goal is to discover plausible explanations for further 
inquiry (de Regt, 1994). In order to yield a set of plausible explanations, abduction 
is usually formulated in the following mode:  

The surprising phenomenon, X, is observed.  

Among hypotheses A, B, and C, A is capable of explaining X.  

Hence, there is a reason to pursue A.  

Although abductive reasoning seems problematic from a deductive standpoint, it is 
a legitimate scientific methodology, which appears in what’s known as “reverse 
engineering.” Inquiry in evolutionary biology utilizes reverse engineering, or 
abduction, because biologists trace back the causal history of evolution given the 
consequences (existing species and fossil records) (Kleiner, 2003).  

The preceding discussion outlines the principle of abductive reasoning. Specific 
implementations of the abductive principle can be embodied in certain qualitative 
methodologies, such as grounded theory (GT). Indeed, grounded theory, as a non-
quantitative method, is a viable way to generate theories that explain the 
qualitative data patterns from which they are derived (Haig, 2005, 1995). Take the 
construct “intelligence” as an example. Early psychometricans made a conjecture 
that there was a single G factor that subsumed all aspects of human intelligence; 
all standardized tests of academic aptitude or achievement measure this general 
factor to some degree, but IQ tests expressly measure it more accurately. To 
counteract this notion, Gardner (1993, 1996) developed the multiple-intelligences 
model, which proposes that human intelligences have at least eight dimensions, 
namely, linguistic, logical-mathematical, interpersonal, intrapersonal, artistic-
spatial, musical, kinesthetic, and naturalist. Contrary to popular belief, this model 
was not developed using factor analysis. Instead, Gardner used a “subjective” and 
qualitative approach to identify those latent constructs.  

GT is one of the qualitative approaches commonly used for discovering new 
concepts and proposing new theories (Glaser & Strauss, 1967; Dey, 1999). It was 
named “grounded theory” because its core idea is to ground the theory on the 
data rather than taking a pre-established theoretical framework for granted. 
Interestingly enough, the inferential process of grounded theory is like reverse 
engineering, as discussed above. In GT, the relevant constructs or variables are 
extracted from the phenomenon under study. GT emphasizes exploratory work in 
the sense that concept identification and theory generation should be an iterative 
process; this process is stopped if and only if the category or the concept is 
saturated, which means collecting new data can no longer add anything new to the 
existing category. What is involved in this iterative process is constant comparison. 
At the beginning, the researcher compares interview (or other data) to interview 
(or other data) in order to extract a recurring theme for theory development. After 
a theory has been developed, the researcher compares data to theory. Unlike 
factor analysis where a structured questionnaire or exam is always used, the 
interview conducted by the grounded theorists is usually unstructured. While a 
factor analyst has some preconceived ideas about what is expected to be 
observed, a grounded theorist, on the contrary, avoids developing a list of pre-



conceived codes before the project starts. In addition, unlike quantitative research, 
there is no rigid sampling scheme in GT. The researcher can choose to expand or 
narrow down the sample pool based upon the emerging theory. Because the 
sampling scheme is driven by the emerging theory, it is termed “theoretical 
sampling.” Further, in quantitative research outliers or misfits are always excluded 
from the analysis, and very few researchers ask why some observations cannot be 
fit into the overall pattern. On the contrary, “strange” data are never considered a 
source of embarrassment by grounded theorists, but an excellent occasion for 
what they may contribute to expansion, refinement, and enrichment of the 
emerging constructs (Glaser, 1978).  

At first glance, this approach of concept identification is very loose in procedure 
and highly speculative. Many qualitative researchers, including grounded theorists, 
subscribe to the worldview of constructivism, in which reality is viewed as a social 
construction based upon human perspectives. Cutcliffe (2000) argued that 
constructivism is not a license for the grounded theorist to freely invent concepts 
and categories. Rather, what it does is to legitimize the researcher's creativity as 
an integral part of the grounded theory inductive process; liberating the 
restrictions on the researcher's tacit knowledge that discounting such knowledge 
creates. While Cutcliffe is correct to emphasize the creative aspect of GT, it is 
problematic to view GT as an inductive process only, because new ideas should 
arise from abduction as well as induction. Roughly speaking, induction is a mode of 
reasoning by seeing more of the same “kind,” but there is no pre-conceived “kind” 
at the initial stage of GT. Usually, induction happens at the later stage of the 
inquiry. For this reason, Haig (1995), Rennie (1999, 2000) and I all regard GT as 
an abductive method. In induction, the researcher comes to a conclusion that a 
stable construct is identified if the same pattern recurs many times, but in order to 
recognize whether observed phenomena converge into a pattern, the research 
question must be stated in advance. However, grounded theorists insist that we do 
not have to prepare an articulated problem in advance of inquiry, rather 
researchers may come to their problems at any point in the research process and 
new concepts can be proposed as new data update our understanding of the 
phenomena. This open-ended qualitative approach may be a viable way to face the 
century-old challenge against causal modeling: “How can the researcher come up 
with a list of relevant variables in the first place?”  

Last, causal modeling is no longer a mere methodological issue that can be 
investigated by statisticians alone. As illustrated above, some insightful theories 
for causal modeling and their counter-arguments are developed by philosophers, 
such as Simon, Glymour, Woodward, and Cartwright. Qualitative researchers can 
also make significant contributions to causal discovery in terms of variable 
identification and theory generation. In an attempt to examine whether causal 
theories in various fields share a common thread, Cartwright (2006) compared 
Suppes’s probabilistic theory of causality, Bayes-net theories, Granger causality, 
modularity accounts, manipulation accounts, invariance accounts, natural 
experiments, causal process theories, the efficacy account, and counterfactual 
accounts. However, owing to her insistence that in a dappled world causality in 
terms of probability is not viable, her theory of causal theories does not seem to 
provide a usable guideline to philosophers and social scientists. Hence, further 
endeavors in studying various causal theories are needed.  

In physics, the superstring theory is under development as a unifying theory of all 
other theories. But, this type of unification is not what I propose here, nor do I 
recommend formulating a theory of causal theories to rank diverse causal 
modeling approaches and to pick the best out of the lot. Different disciplines have 
different problems in causal modeling. For example, for psychologists the issue is 
latent constructs whereas for biologists the major concern is fundamental units.5 A 
taxonomy that specifies which causal discovery approach is appropriate given 
which conditions would be desirable. However, it is unlikely for a single scholar to 
be well-versed in every causal discovery methodology in different fields. Therefore, 
it will be more fruitful to engage in inter-disciplinary dialogs and collaborations 



than to try to single-handedly exhaust all causal modeling methods.  
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End Notes 

1. Kenny (2004) posted a revised version on his website. The main points that are 
cited in this chapter remain in the online version. Kenny said, “The revised edition 
is essentially the same as the original 1979 book. I have corrected the errors that 
I knew of. I have added a few new references. However, in no way this revised 
edition should be considered an updated version of the manuscript” (p.vi). 

2. Take Spearman’s G factor as an example. Zero tetrad differences among 
measures of reading and math aptitude led to the formulation of the hypothesis 
that a single common cause, namely, general intelligence, was responsible for 
performance on all four pyschometric instruments. In other words, if the 
correlation of a pair of variables is not different from another pair and this pattern 
holds in all pairwise comparisons, the researcher has no reason to suspect that 
there is more than one cluster of variables or that there is more than one 
construct behind those variables. This implication of a common cause holds no 
matter what values the linear coefficients may have, and no matter what the joint 
distribution of variables may be. Spearman’s tests always assumed that the 
measured variables are jointly normally distributed. After the causal structure was 
established, the linear coefficients could be estimated from the data (Glymour, 
1999). While checking normality and linearity are not difficult, the null hypothesis 
is that the tetrad differences are zero in the population, and a certain minimum 
sample size is required to get an accurate probability estimates based on this 
hypothesis. But, according to Shipley (2000), no one has formally studied the 
asymptotic requirement for the vanishing tetrad test.  

3. Woodward (2001) cites this example: It has been argued that the stability of 
planetary orbits depends on the dimensionality of the space-time in which they are 
situated. Such orbits are stable in a four-dimensional space-time but would be 
unstable in a five-dimensional space-time. The above claim fits well with the idea 
that causal explanations provide answers to the ‘what-if” question. However, the 
causal structure of the spatial-temporal dimensions and planetary orbits has been 
established before the existence of human beings, and even though there are 
human beings in the universe now, no one could physically manipulate the spatial-
temporal dimensions.  

4. Cartwright (1999) is very concerned with using causal models developed by 
Glymour to drive policy-decision. Because every situation is unique, to develop a 
sound policy we need to know not only what causal relations hold, but what will 
happen to them when we undertake changes. Cartwright also worries that the 
quest for fundamental laws is a blind faith that has led to detrimental social 
consequence. For example, she disagrees with the take-over of genetics as the 
dominant approach to try to cure diseases like breast cancer. She is afraid that 
women are dying of breast cancer because treatments other than gene therapy, 
with good empirical supports, are ignored or under-funded. In brief, Cartwright’s 
theory has a social dimension, not just epistemic.  

5. Take evolutionary biology as an example. The concept of “character” is essential 
to the study of evolution in the context of homology, which is a study of 
“sameness.” While tracing links between species, a biologist must ask a question 
like “How do I recognize the character in species B that corresponds to the one I 
know from species A?” This question leads to another question: “What are the 



natural units that organisms are composed of?” It would be crazy for a biologist to 
make a molecule-to-molecule comparison between two species. The biologist must 
choose some “kinds” or “characters” that are beyond the molecular level (Wagner, 
2001). Most latent constructs in social sciences are psychological and cannot be 
directly observed, while characters and kinds in biology can be observed, but 
selecting which one as the basic unit of analysis is challenging.  
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