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ABSTRACT 
 
Parametric tests are widely applied by researchers in every 
discipline. However, sometimes the appropriateness of their 
applications is in question. In a parametric test an underlying 
distribution is assumed, and a sample statistic is obtained to 
estimate the population parameter. Because this estimation 
process involves a sample, a sampling distribution, and a 
population, certain assumptions are required to ensure that all 
components are compatible with each other. As a matter of fact, 
data collected in social sciences usually violate parametric 
assumptions to some degree. The objectives of this paper are to 
briefly explain why these violations are detrimental to research 
and to introduce what alternatives could be used in the SAS 
system to rectify the situation. 
 
INTRODUCTION 
 

Parametric tests are widely applied by researchers in every 
discipline. However, sometimes the appropriateness of the 
application is in question. After reviewing over 400 large data 
sets, Micceri (1989) found that the great majority of data 
collected in behavioral sciences do not follow univariate normal 
distributions. Breckler (1990) reviewed 72 articles in personality 
and social psychology journals and found that only 19% 
acknowledged the assumption of multivariate normality, and 
less than 10% considered whether this assumption had been 
violated. Having reviewed articles in 17 journals, Keselman et 
al. (1998) found that researchers rarely verify that validity 
assumptions are satisfied and they typically use analyses that are 
nonrobust to assumption violations. As a matter of fact, data 
collected in social sciences usually violate parametric 
assumptions to some degree. Cliff (1996) observed that even if 
data collection is carefully thought out, data are often not based 
upon a highly parametric model. The objectives of this paper are 
to briefly explain why these violations are detrimental to 
research and to introduce what alternatives could be used in the 
SAS system to rectify the situation. 
 
WHY ARE PARAMETRIC ASSUMPTIONS 
IMPORTANT? 
 

In a parametric test an underlying distribution is assumed, and 
a sample statistic is obtained to estimate the population 
parameter. Because this estimation process involves a sample, a 
sampling distribution, and a population, certain assumptions are 
required to ensure that all components are compatible with each 
other. Take ANOVA as an example. ANOVA is a procedure of 
comparing means in terms of variance with reference to a 
normal distribution. The inventor of ANOVA, Sir R. A. Fisher 
(1935), clearly explained the relationship among the mean, the 
variance, and the normal distribution: "The normal distribution 
has only two characteristics, its mean and its variance. The mean 
determines the bias of our estimate, and the variance determines 

its precision" (p.42). It is generally agreed that the estimation 
becomes more precise as the variance becomes smaller and 
smaller. 

To put it another way, the purpose of ANOVA is to extract 
precise information out of a bias, or to filter a signal out of 
noise. When the data are skewed (non-normal), the means can 
no longer reflect the central location and thus the signal is 
biased. When the variances are unequal, not every group has the 
same level of noise, and thus the comparison is invalid. More 
importantly, the purpose of a parametric test is to make 
inferences from the sample statistic to the population parameter 
through sampling distributions. When the assumptions are not 
met in the sample data, the statistic may not be a good 
estimation to the parameter. It is incorrect to say that the 
population is assumed to be normal and therefore the researcher 
demands the same properties in the sample. Actually, the target 
population is infinite in size and unknown in distribution. It may 
or may not possess those attributes. The required assumptions 
are imposed on the data because those attributes are found in 
sampling distributions. However, very often the acquired data do 
not meet these assumptions. Nevertheless, in the SAS system 
there are at least five sets of tools to address these problems: 

 
1. Monte Carlo simulations (e.g., SAS/IML) 
2. Non-parametric tests (e.g., PROC NONPARA1WAY)  
3. Robust procedures (e.g., PROC UNIVARIATE, 

SAS/INSIGHT, PROC LOESS) 
4. Data transformation (e.g., SAS/INSIGHT) 
5. Resampling procedures (e.g., PROC MULTTEST) 
 

Each of these tools will be discussed in the following. 
 
MONTE CARLO SIMULATIONS: TEST OF 
THE TEST 
 

If you are familiar with Monte Carlo simulations (research 
with dummy data), you can defend your case by citing Glass et 
al.'s (1972) finding that many parametric tests are not seriously 
affected by violation of assumptions. Indeed, it is generally 
agreed that the t-test is robust against mild violations of 
assumptions in many situations and ANOVA is also robust if the 
sample size is large. For this reason, Box (1953) mocked the 
idea of testing the variances prior to applying an F-test: "To 
make a preliminary test on variances is rather like putting to sea 
in a rowing boat to find out whether conditions are sufficiently 
calm for an ocean liner to leave port!" (p.333)  

 
In spite of this assurance, there are still some important 

questions: How large should the sample size be to make 
ANOVA robust? How mild a violation is acceptable? How 
extreme is extreme? Questions like these have been extensively 
studied by Monte Carlo simulations. One can use the interactive 
matrix language in SAS/IML to study the behavior of tests (e.g., 
Thompson et al., 2002). Usually in a simulation, three 
parameters need to define, namely, the sample size, the number 



of replications, and the seed for random numbers. However, 
Monte Carlo simulations are extremely computing-intensive. 
Also, researchers who are not in this field will be hard pressed to 
"test the test" before employing any test. Nevertheless, 
researchers could consult the results of Monte Carlo studies to 
determine whether a specific parametric test is suitable to their 
specific data structure. 

 
NON-PARAMETRIC TESTS 
 

Some researchers apply non-parametric tests when 
assumptions are violated. As the name implies, non-parametric 
tests do not require parametric assumptions because interval data 
are converted to rank-ordered data. Examples of non-parametric 
tests are:  

 
• Wilcoxon signed rank test  
• Whitney-Mann-Wilcoxon (WMW) test  
• Kruskal-Wallis (KW) test  
• Friedman's test  

 
In SAS/STAT, PROC NONPARA1WAY is available for 

comparing groups in terms of rank and scale differences. When 
there are two groups in the data, the tests are based on simple 
linear rank statistics. When the data have more than two groups, 
the tests are based on one-way ANOVA statistics. Both 
asymptotic and exact p-values are reported.  This procedure also 
computes statistics of the empirical distribution function. This 
statistics indicates whether the distribution of a variable is the 
same across different groups. However, only asymptotic p-
values are available for these tests. 

 
Handling of rank-ordered data is considered a merit of non-

parametric tests. Gibbons (1993) observed that ordinal scale data 
are very common in social science research and almost all 
attitude surveys use a 5-point or 7-point Likert scale. But the 
nature of this type of data is ordinal rather than interval. In 
Gibbons' view, non-parametric tests are considered more 
appropriate than classical parametric procedures for Likert-
scaled data. 1 However, non-parametric procedures are criticized 
for the following reasons: 

 
1. Losing precision: Edgington (1995) asserted that when 

more precise measurements are available, it is unwise 
to degrade the precision by transforming the 
measurements into ranked data. 2 

 
2. Low power: Generally speaking, the statistical power 

of non-parametric tests is lower than that of their 
parametric counterparts except on a few occasions 
(Hodges & Lehmann, 1956; Tanizaki, 1997).  

 
3. Inaccuracy in multiple violations: Non-parametric 

tests tend to produce biased results when multiple 
assumptions are violated (Glass, 1996; Zimmerman, 
1998). 

 
4. Testing distributions only : Further, non-parametric 

tests are criticized for being incapable of answering a 
focused question. For example, the WMW procedure 
tests whether the two distributions are different in 
some way but does not show how they differ in mean, 
variance, or shape. Based on this limitation, Johnson 
(1995) preferred robust procedures and data 
transformation to non-parametric tests. Robust 

procedures and data transformation will be introduced 
next.  

 
 

Taking all of the above shortcomings into account, non-
parametric tests are generally not recommended 
 
ROBUST PROCEDURES 
 

The term "robustness" can be interpreted literally. If a person 
is robust (strong), he will be immune from hazardous conditions 
such as extremely cold or extremely hot weather, viruses, etc. If 
a test is robust, the validity of the test result will not be affected 
by poorly structured data. In other words, it is resistant against 
violations of parametric assumptions. Robustness has a more 
technical definition: If the actual Type I error rate of a test is 
close to the proclaimed Type I error rate, say 0.05, the test is 
considered robust. 

 
Several conventional tests have some degree of robustness. 

For example, Satterthwaite's (1946) t-test used by SAS could 
compensate unequal variances between two groups. In SAS 
when you run a t-test, SAS can also test the hypothesis of equal 
variances. When this hypothesis is rejected, you can choose the 
t-test adjusted for unequal variances (see Table 1). 
 
Table 1. T-test result from SAS 
 

Variances T DF Prob>|T| 

Unequal -0.0710 14.5 0.9444 

Equal -0.0750 24.0 0.9408 

For H0: Variances are equal, F' = 5.32  
DF = (11,13) Prob>F' = 0.0058  

 
By the same token, for conducting analysis of variance in 

SAS, you can use PROC GLM (Procedure Generalized Linear 
Model) instead of PROC ANOVA when the data have 
unbalanced cells. However, the above adjusted t-test is only 
robust against the violation of equal variances. When multiple 
problems occur (welcome to the real world), such as non-
normality, heterogeneous variances, and unequal sizes, the Type 
I error rate will inflate (Wilcox, 1998; Lix & Keselman, 1998).  

 
To deal with the problem of multiple violations, robust 

methods such as trimmed means and Winsorized variances are 
recommended. In the former, outliers in both tails are simply 
omitted. In the latter, outliers are "pulled" towards the center of 
the distribution. For example, if the data vector is [1, 4, 4, 5, 5, 
5, 6, 6, 10], the values "1" and "10" will be changed to "4" and 
"6," respectively. This method is based upon the Winsor's 
principle: "All observed distributions are Gaussian in the 
middle." Yuen (1974) suggested that to get the best of all 
methods, trimmed means and Winsorized variances should be 
used in conjunction with Welch's t-test (a form of robust t-test 
like Satterthwaite's).  

SAS/Insight can compute both Winsorized and trimmed 
means by pointing and clicking (under the pull down menu 
“Table.” See Figure 1).  

 
 
 



Figure 1. Winsorized and trimmed means in SAS/INSIGHT 
 

 
 

In addition, PROC UNIVARIATE can provide the same 
option as well as robust measures of scale. By default, PROC 
UNIVARIATE does not return these statistics. The “ALL” 
option must be specified in the PROC statement to request the 
following results (see Figure 2).  

 
Figure 2. Winsorized and trimmed means in PROC 
UNIVARIATE ALL 

 

 
 

 
Mallows and Tukey (1982) argued against the Winsor's 

principle. In their view, since this approach pays too much 
attention to the very center of the distribution, it is highly 
misleading. Instead, they recommended developing a way to 
describe the umbrae and penumbrae around the data. Tukey 
strongly endorsed using exploratory data analysis (EDA) 
techniques such as data transformation, which will be discussed 
in the next section. 

 

In addition, Keselman and Zumbo (1997) found that the 
nonparametric approach has more power than the trimmed-mean 
approach does. Nevertheless, Wilcox (2001) asserted that the 
trimmed-mean approach is still desirable if 20 percent of the 
data are trimmed under non-normal distributions. 

 
Regression analysis also requires several assumptions such as 

normally distributed residuals. When outliers are present, this 
assumption is violated. To rectify this situation, robust 
regression such as PROC LOESS can be used to downweight 
the influence of outliers. The weight range is from 0 to 1. 
Observations that are not extreme have the weight as "1" and 
thus are fully counted into the model. When the observations are 
outliers and produce large residuals, they are either totally 
ignored ("0" weight) or partially considered (low weight). 

 
When data for ANOVA cannot meet the parametric 

assumptions, one can convert the grouping variables to dummy 
variables (1, 0) and run a robust regression procedure. As 
mentioned before, robust regression downweights extreme 
scores. When assumption violations occur due to extreme scores 
in one tail (skew distribution) or in two tails (wide dispersion, 
unequal variances), robust regression is able to compensate for 
the violations (Huynh & Finch, 2000).  

 
Cliff (1996) was skeptical to the differential data-weighting of 

robust procedures. Instead he argued that data analysis should 
follow the principle of “one observation, one vote.” 
Nevertheless, robust methods and conventional procedures 
should be used together when outliers are present. Two sets of 
results could be compared side by side in order to obtain a 
thorough picture of the data. 

 
DATA TRANSFORMATION 
 

Data transformation methods suggested by EDA are another 
alternative to counteract assumption violations (Behrens, 1997; 
Ferketich & Verran, 1994). Data transformation is also named 
data re-expression. The transformed data can be used in different 
ways. Because data transformation is tied to EDA, the data can 
be directly interpreted by EDA methods. Unlike classical 
procedures, the goal of EDA is to unveil the data pattern, and 
thus it is not necessary to make a probabilistic inference. 
Alternatively, the data can be further examined by classical 
methods if they meet parametric assumptions after the re-
expression. Parametric analysis of transformed data is 
considered a better strategy than non-parametric analysis 
because the former appears to be more powerful than the latter 
(Rasmussen & Dunlap, 1991). 

 
Data transformation happens in our everyday life. For 

example, converting US dollars into Canadian dollars, 
converting a GPA of 5-point scale to a GPA of 4-point scale. 
However, these examples belong to the linear transformation, by 
which the distribution of the data is not affected. In EDA, 
usually the non-linear transformation is used and thereby it 
changes the data pattern. Data re-expression is exploratory in 
nature because, prior to the transformation, the researcher never 
knows which re-expression approach can achieve desirable 
results. Cliff (1996) argued that data transformation confines the 
conclusion to the arbitrary version of the variables, indeed data 
transformation is hardly arbitrary. The following are common 
schemes of data re-expression: 

 



1. Normalize the distribution: Non-normal data violate 
the assumption of a parametric test and thus a 
transformation is advisable. It is a common 
misconception that converting raw scores to z-scores 
yields a normal distribution. Actually, the raw-to-z 
transformation is a linear transformation. The 
appropriate procedure should be natural log 
transformation or inverse probability transformation. 

 
2. Stabilize the variances: Data with unequal variances 

are also detrimental to parametric tests. A typical 
example of variance stabilizing transformation is 
square root transformation: y* = sqrt(y).  

 
 
3. Linearize the trend: Regression analysis requires the 

assumption of linearity. When the data show a 
curvilinear relationship, the researcher can either 
apply non-linear regression analysis or straighten the 
trend by linearizing transformation. A logarithmic 
transformation is a typical example of the latter. 

 
In SAS/STAT data transformation can be performed by 

invoking different functions. However, SAS/INSIGHT is a 
better tool for this task because of its interactive nature. In 
SAS/INSIGHT, any variable can be highlighted and transformed 
by pre-determined transformation functions. Customized 
transformations can also be built by selecting "other…" (see 
Figure 3). 
 
 
Figure 3. Data transformation in SAS/Insight 
 

 
 
RESAMPLING 
 

Resampling techniques such as randomization exact test, 
jackknife, and bootstrap are also viable alternatives (Diaconis & 
Efron, 1983; Edgington, 1995; Ludbrook & Dudley, 1998). 
Robust procedures recognize the threat of parametric 
assumption violations and make adjustments to work around the 
problem. Data re-expression converts data to ensure the validity 
of using parametric tests. Resampling is very different from the 
above remedies, for it is not under the framework of theoretical 
distributions imposed by classical parametric procedures.  

 
Classical parametric tests compare observed statistics to 

theoretical sampling distributions. Resampling is a revolutionary 
methodology because it is departed from theoretical 
distributions. Rather the inference is based upon repeated 
sampling within the same empirical sample, and that is why this 
school is called resampling. 

 

The resampling method is tied to the Monte Carlo simulation, 
in which researchers "make up" data and draw conclusions 
based on many possible scenarios. The name "Monte Carlo" 
came from an analogy to the gambling houses on the French 
Riviera. Many years ago when some gamblers studied how they 
could maximize the chances to win, they used simulations to 
check the occurrence of each case. Today Monte Carlo 
simulations are widely used by statisticians to study the 
"behaviors" of different statistical procedures. Nevertheless, 
there is a fundamental difference between Monte Carlo 
simulation and resampling. In the former data could be totally 
hypothetical while in the latter the simulation is still based upon 
some real data. 

 
In older versions of the SAS system, resampling must be 

performed by using macros (SAS Institute, 1997). In the new 
version, PROC MULTTEST is available for bootstrapping and 
permutation tests. This procedure can exhaust every possible 
combination of outcomes, and thus an empirical distribution is 
built on the empirical sample data. Because one compares the 
observed statistics with the empirical distribution, the latter 
becomes the reference set. 

 
Nonetheless, some methodologists are skeptical toward 

resampling for the following reasons: 
 

1. Assumption: Fienberg said, "you're trying to get 
something for nothing. You use the same numbers 
over and over again until you get an answer that you 
can't get any other way. In order to do that, you 
have to assume something, and you may live to 
regret that hidden assumption later on" (cited in 
Peterson, 1991, p. 57).  

 
2. Generalization: Some critics argue that resampling 

is based on one sample and therefore the 
generalization cannot go beyond that particular 
sample. One critic even went further to say, "I do 
wonder, though, why one would call this 
(resampling) inference?" (cited in Ludbrook & 
Dudley, 1998) 

 
3. Bias and bad data: Bosch (2002) asserted that 

confidence intervals obtained by simple 
bootstrapping are always biased, though the bias 
decreases with sample size. If the sample comes 
from a normal population, the bias in the size of the 
confidence interval is at least n/(n-1), where n is the 
sample size. Some critics challenge that when the 
collected data are biased, resampling would just 
repeat and magnify the same mistake. Rodgers 
(1999) admitted that the potential magnification of 
unusual features of the sample is certainly one of 
the major threats to the validity of conclusions 
derived from resampling procedures. 

 
4. Distributions are not identical: Cliff (1996) argued 

that randomization test of location comparisons, 
such as mean differences, are valid under the 
assumption that the distributions are identical. If 
they differ in spread or skewness, the Type I error 
rate can be inflated. 

 
Taking the preceding potential problems of resampling into 

consideration, it is recommended that resampling and classical 
procedures should be used together. 



CONCLUSION 
 

Parametric tests undoubtedly have limitations. Unfortunately, 
in spite of repeated warnings, many researchers still proceed 
with those tests without implementing any remedy. They always 
assume that all tests are "ocean liners." It is hoped that the 
alternatives to parametric tests in the SAS system highlighted in 
this paper can be applied to rectify the situation. The preceding 
options are not mutually exclusive. Rather they can be used 
together to compliment each other and to verify the results. 

 
NOTES 
 
1. Today researchers very seldom use a single Likert scale as 

a variable. Instead, many items are combined as a 
composite score if Cronbach Alpha verifies that the items 
are internally consistent and factor analysis confirms that 
all items could be loaded into one single dimension. By 
using a composite score, some social scientists believe that 
the ordinal-scaled data based upon a Likert-scale could be 
converted into a form of pseudo-interval-scaled data. To be 
specific, if 50 five-point Likert-scaled items were totaled as 
a composite score, the possible range of data value would 
be from 1 to 250. In this case, a more extensive scale could 
form a wider distribution. Nonetheless, this argument is not 
universally accepted. 

 
The issue of the appropriateness of ordinal-scaled data in 
parametric tests was unsettled even in the eyes of Stevens 
(1951), the inventor of the four levels of measurement: "As 
a matter of fact, most of the scales used widely and 
effectively by psychologists are ordinal scales...there can be 
involved a kind of pragmatic sanction: in numerous 
instances it leads to fruitful results" (p.26). Based on the 
central limit theorem and Monte Carlo simulations, Baker, 
Hardyck, and Petrinovich (1966) and Borgatta and 
Bohrnstedt (1980) argued that for typical data, worrying 
about whether scales are ordinal or interval does not matter. 
 
Another argument against not using interval-based statistical 
techniques for ordinal data was suggested by Tukey (1986). 
In Tukey's view, this was a historically unfounded 
overreaction. In physics, before precise measurements were 
introduced, many physical measurements were only 
approximately interval scales. For example, temperature 
measurement was based on liquid-in-glass thermometers. 
But it is unreasonable not to use a t-test to compare two 
groups of such temperatures. Tukey argued that researchers 
painted themselves into a corner on such matters because 
they were too obsessed with "sanctification" by precision 
and certainty. If p-values or confidence intervals are to be 
sacred, they must be exact. In the practical world, when data 
values are transformed (e.g. transforming y to sqrt(y), or 
logy), the p values resulting from different expressions of 
data change. Thus, ordinal-scaled data should not be banned 
from entering the realm of parametric tests. For a review of 
the debate concerning ordinal- and interval-scaled data, 
please consult Velleman and Wilkinson (1993). 
 

2. Harrell (1999) disagreed with Edgington: "Edgington's 
comment is off the mark in most cases. The efficiency of the 
Wilcoxon-Mann-Whitney test is 3/pi (0.96) with respect to 
the t-test IF THE DATA ARE NORMAL. If they are non-
normal, the relative efficiency of the Wilcoxon test can be 
arbitrarily better than the t-test. Likewise, Spearman's 

correlation test is quite efficient  relative to the Pearson r test 
if the data are bivariate normal. Where you lose efficiency 
with nonparametric methods is with estimation of absolute 
quantities, not with comparing groups or testing correlations. 
The sample median has efficiency of only 2/pi against the 
sample mean if the data are from a normal distribution." 
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